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Part 1
Introduction
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What is Cryptology?

Cryptology: protect information against unauthorized users.

Two main directions:

1. Authentication: Information originates from authorized user.

2. Confidentiality: Information is secret to unauthorized user.

Applications of cryptology:

I Electronic banking

I Biometric passports

I Wireless communication

I Secured computer networks

I Embedded systems
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Confidentiality

Confidentiality can be achieved with symmetric encryption.

Alice and Bob exchange a secret key and encrypt/decrypt messages.
An adversary tries to decrypt a ciphertext without knowing the key.

Some time ago: ”Hello” → ”Khoor” (Caesar cipher, shift 3 positions).

Today: Use a secure block cipher or stream cipher.

The cipher must be very fast for real-time applications (and still secure).
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Stream Cipher

Stream ciphers are based on the One-Time-Pad :

key: 001010100010111 . . . (exchange random bits)
XOR

plaintext: 000000100010001 . . . (binary message)

ciphertext: 001010000000110 . . .

Good things first: From the ciphertext, the adversary can never get the
message → perfect security!

Bad thing: The secret key is as large as the message → impractical.
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The General Model

Stream cipher:

1. Exchange a small secret key (e.g. 128 bits).

2. Produce a long pseudo-random keystream (e.g. millions of bits).

Two Components:

Initialisation: key, IV → initial state
Automaton: initial state → keystream
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Automaton of a Stream Cipher

Automaton:

Update function L: state → new state
Filter function f : state → keystream

Use only few operations: fast and low HW requirements.
Examples: A5 in GSM / Bluetooth / sensor networks / RFID
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Attacks

Security not well established, new designs in eSTREAM project.

Our contribution in this thesis is to attack stream ciphers.

What is an a attack on a stream cipher?

Assume that keystream is known (known-plaintext attack):

a) Recover the internal state (equivalent to key recovery in many cases).

b) Or distinguish the keystream from uniformly random.

For a secret key of n bits, correct key can be found by trying all 2n keys.

Any attack faster than 2n simple operations breaks the cipher (which does
not mean that the attack is practical).
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Part 2
Algebraic Attacks

Simon Fischer Analysis of Stream Ciphers 10 / 43



Filter Generator

Focus here on the classical filter generator.

Update function L: A linear feedback shift register (LFSR), it can have
maximum period and good statistical properties.

Filter function f : A nonlinear Boolean function of some degree.
It takes a few bits from the state and produces one bit of keystream.
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Algebraic Equations

A filter generator is defined by a system of algebraic equations.
A solution of this system gives the secret key.

Our system of equations:

f(x) = z0

f(L(x)) = z1

f(L2(x)) = z2

...

Example:

x1x3x4 ⊕ x3 = 0
x2x3x4 ⊕ x1x3x4 = 1

x1x3 ⊕ x2x4 = 1
...

Have many nonlinear equations with n variables and degree at most deg f .
Solution with linearization: new variable for all

(
n

deg f

)
monomials.
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Algebraic Attacks

Problem: Simple linearization is not efficient if deg f is large.
Idea: Reduce degree of equations → algebraic attacks.

Find g of small degree d, such that f · g = 0. Obtain new equations of
degree d:

f(Lt(x)) = zt | · g(Lt(x))
0 = g(Lt(x)) if zt = 1

Attack: Time complexity with linearization is
(
n
d

)3
, data

(
n
d

)
.

Algebraic immunity AI is minimum degree of annihilator for f or f ⊕ 1.
See e.g. [Armknecht-Carlet-Gaborit-Künzli-Meier-Ruatta 06].
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Fast Algebraic Attacks

FAA’s [Courtois 03]: Improvement of AA’s [Courtois-Meier 03].

1. Find g and h of low degrees e and d, such that f · g = h

2. Precompute a linear combination for all t

D⊕
i=0

ci · h(Lt+i(x)) = 0

3. This gives an equation of degree e

D⊕
i=0

ci · g(Lt+i(x)) · zt+i = 0

Time complexity
(
n
e

)3
for solving, e can be much smaller than d.

Data complexity D =
(
n
d

)
can be the same as in AA’s.
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New Algorithm for Arbitrary Functions

Goal: Determine existence of (g, h) for fixed degrees (e, d).

We have a theorem to isolate single coefficients of h. With clever choice
of parameters, can solve small system in coefficients of g only.

New and very efficient algorithm to determine immunity against FAA’s.

Question: Some functions have large AI (immune against AA’s).
Are they also immune against FAA’s?

Experiments with DGM functions of maximum AI [FSE 05].

Apply our algorithm up to 10 inputs, find d = AI, e = 1
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Symmetric Functions

Symmetric functions:

I Output f(x) depends only on weight of input x

I Suitable for efficient HW implementations

Have algorithms for symmetric functions which are much more efficient.
Successfully applied to many symmetric functions with maximum AI.

Theoretical result for Majority functions (with maximum AI):

I Can predict degrees of g and h for any n.

I For example, for 9 inputs it is d = AI, e = 1

Some functions with maximum AI are very vulnerable to FAA’s.
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Augmented Function

Recall: FAA’s need (at least) as much data as AA’s.

Q: Can we improve AA’s to reduce data complexity?
A: Use multiple output bits to find new equations.

Approach: Construct the augmented function (AF) of a stream cipher

x 7→ (f(x), f(L(x)), . . . , f(Lm−1(x))

I Find equations for AF with fixed output z of m bit.

I These equations are called conditional equations (CE’s).

I CE’s are equations in x which hold true for all preimages of z.
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How to Find Conditional Equations

Use matrix approach to find CE’s [Courtois 03].

Example: AF with n = 3, assume some output z with preimages
x =100, 110, 011, 001. Find linear CE.

M =

1 x1 x2 x3 preimages
1 1 0 0
1 1 1 0
1 0 1 1
1 0 0 1


x = 100
x = 110
x = 011
x = 001

Solution: 0 = 1⊕ x1 ⊕ x3 holds for each preimage.
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Algorithmic Methods

Find CE’s by setting up and solving the matrix.
Bottleneck: finding all preimages takes 2n steps.

Probabilistic algorithm:
Compute only a few random preimages. A random preimage of m-bit
output is found in 2m, sometimes faster with sampling.

Under favorable conditions, CE already exists for small m (where matrix
method is efficient). Can choose parameters s.th. CE holds true for a
random preimage with large probability.
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Results for Filter Generators

Experimental Results:

I Several filter functions f are shown to be weak:
Many low degree equations can be determined efficiently (i.e. they
exist already for small block sizes m).

I Each new low degree equation (found by investigating AF) can serve
to reduce data complexity of algebraic attacks.

I In some cases, data complexity can be of order n (with time
complexity below exhaustive search).

I Have identified functions f which show resistance to this approach:
Low degree eq’s exist only for large m, effort for preimages up to 2n.
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A Related Attack on ASG

Alternating Step Generator [Günther 87]:
One LFSR of n bits controls clock of two stop/go LFSR’s of n bits each.

Recover one stop/go LFSR [Golic-Menicocci 06], [Johansson 98]:

I Can efficiently compute preimages for fixed output of m bits

I Distribution of preimages strongly correlated to output

I Compute only T < 2n preimages such that correct one is included

We find T = 2H with entropy H conditioned by output.

Example:
For n = 42 and output of m = 84 and weight w = 14, it is H = 24.16.

New attack with many tradeoffs, best known attack so far.
For n = 80, reduce data complexity by factor 213.
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Part 3
Attacks on T-functions
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Motivation

Filter Generators (with linear update):

" Very elegant and efficient (basis of other constructions)
LFSR has good statistical properties

% Security strongly relies on filter
Can be vulnerable to AA and FAA

Natural question: Can we replace LFSR with nonlinear primitive?
Potential answers: NFSR’s, FCSR’s, Nonlinear T-functions, . . .
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What is a T-function?

I TF is triangular mapping from n-bit to n-bit,
bit i of output depends only on bits 0, 1, . . . , i of input

I Definition naturally extends to multiword mapping (bit-slices)
x0

x1

x2

x3

 =


1 1 1 0 1 1 1 0
0 1 0 1 1 0 1 1
0 0 1 1 0 1 0 0
1 0 0 1 1 1 1 1


Example: arbitrary (crazy) composition of +, ×, ⊕, ∨, ∧, . . .

I Such compositions are fast in SW and dedicated HW

I TF have many analyzable mathematical properties (invertible,
single-cycle, . . .)
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Definition of TF-0M

Stream cipher TF-0M, proposed by Klimov and Shamir [FSE 04].

State: 4 words xi of 64 bits each
Update:

L :


x0

x1

x2

x3

 7→

x0 + (s20 ∨ C0)
x1 + (s21 ∨ C1) + κ0

x2 + (s22 ∨ C2) + κ1

x3 + (s23 ∨ C3) + κ2


(si are simple functions of x, Ci are constants, κi are carry bits)

Output: f(x) are first 32 msb’s of x3

Update is single-cycle TF with period 2256, intended security is 2128.
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Relationship to the Square Mapping

Consider the integer difference of two successive outputs of TF-0M

f(L(x))− f(x) = f(s23) + c mod 2m

Related to square mapping and expected to be biased.

Compute distribution:

I Approximate with pure square mapping z = f(y2) mod 2m

(uniformly random y, ignore carry)

I Impossible to compute distribution of PSM for n = 64.
Compute distribution for small word sizes n . . .
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Distinguishing Attack

Observe that following words occur two times more than expected

z = 2
n−8

2 · i2 for i = 0, 1, 2, 3

Many more aggregates of words with constant bias exist.
Observation seems to be independent of n.

Approximate distribution of z = f(y2) mod 2m in very compact way.
Measure the imbalance for n = 64, expected data complexity of 232.

Can apply same distinguisher for integer differences of TF-0M outputs.
Practical distinguishing attack, despite large state of 256 bits.

We have successfully analysed 3 other proposals based on T-functions.

Simon Fischer Analysis of Stream Ciphers 27 / 43



Part 4
Attacks on Salsa20
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Motivation

" Have well-known LFSR based designs

" Replace LFSR with nonlinear driving devices

% Can be critical, as seen for TF

Other approach:

I Design of a unique stream cipher (not based on LFSR’s)

I Can be related to well-known methods from block ciphers

I Should be much faster than block ciphers in counter mode
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Salsa20

eSTREAM focus candidate [Bernstein 05].

State: matrix of 16 words of 32 bits.
Update: increment a counter.
Output: modify below-diagonal word first. . .

x0 x1 x2 x3

x4 x5 x6 x7

x8 x9 x10 x11

x12 x13 x14 x15



I Repeat for all words in columns, then in rows

I 10 rounds columns, 10 rounds rows

I Output the keystream Z = X0 +X20 of 512 bits
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Initialisation

Initialisation:
Trivial, fill state with (key, counter, IV) where counter = 0

X0 =


const key key key
key const IV IV

counter counter const key
key key key const



Consider version with key size of 256 bits.

Analyse reduced variants, e.g. 7 rounds with Z = X0 +X7.
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Differential Attack

Reduced variants are analysed with differential methods [Crowley 05],
[Fischer-Meier-Berbain-Biasse-Robshaw 06]:

Step 1: Precomputation of forwards truncated differential

I Fix single-bit input-difference (ID) in IV

I Observe single-bit output-difference (OD) in Xr

I For random IV’s, this differential has bias εd

X0 → X1 → X2 → X3 → X4

Y 0 → Y 1 → Y 2 → Y 3 → Y 4

∆0 → . . . → ∆4
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Differential Attack

Step 2: Observe εd a few rounds later with backwards computation

I Collect keystream pairs Z = X0 +XR for random IV’s and fixed ID

I Guess part of the key (required in X0)

I Backwards computation to get biased OD in Xr = (Z −X0)r−R

I For correct key, a bias εd is measured

X4 ← X5 ← X6 ← X7 key←−− X7 +X0

Y 4 ← Y 5 ← Y 6 ← Y 7 key←−− Y 7 + Y 0

∆4
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Approximation

Classical way: try all 2256 keys, test each key with N samples
(N depends on εd and desired pfa).

New idea: Find approximation of backwards computation which

I depends only on m < 256 key bits

I and with a (significant) bias of εa

This reduces the search space to 2m but increases N , because
approximation introduces additional bias (with overall bias ε = εd · εa).

Requires N2m steps to test subkeys, identify set of pfa2m candidate
subkeys, verify full key with search over remaining key part.

Total complexity: C = N2m + 2256pfa.
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Probabilistic Neutral Bits

How to identify a suitable approximation?

Approach:
Divide key bits in two sets: significant key bits and PNB’s.
Approximation is defined by replacing PNB’s by fixed bits.

Definition

Let γi be the bias that complementing the key bit ki does not change the
value of backwards computation (neutrality measure).

Significant key bits: all key bits ki with |γi| < threshold.

This is our method to compute approximations, can apply the attack.
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Experimental Results

For every variant, find optimal differentials with many PNB’s.

Salsa20/7:
Attack in 2152 and N = 227 (previous attack in 2190). Use a 4-rounds
differential, compute 3 rounds backwards with 131 PNB’s.

Salsa20/8: best known attack on Salsa20 so far.
Attack in 2251 and N = 230. Use a 4-rounds differential, compute 4
rounds backwards with 36 PNB’s.

ChaCha7:
Attack in 2248 and N = 227. Use a 3-rounds differential, compute 4
rounds backwards with 35 PNB’s.

Related result: collision for 3 rounds of Rumba with multibit-differential.
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Part 5
Chosen IV Attacks
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Motivation

Initialisation: key, IV → initial state

Efficiency: Often constructed by a number of simple rounds.
Security: Each state bit should depend on each key and IV bit in a
complex way.

Tradeoff in the number of rounds for large diffusion.

If diffusion is not sufficient, there exists a framework of chosen IV
statistical distinguishing attacks [Saarinen 06]: obtain a small function by
varying a few IV bits, measure imbalance of a fixed monomial.

Open problem: Is this framework useful for key recovery attacks?
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Key Recovery Attacks

Approach: Some key bits in the coefficient of a monomial may have
limited influence. Can identify PNB’s and define approximation which
depends on subkey.

Find key recovery attacks on two reduced eSTREAM focus candidates.

Trivium with 672/1152 rounds:
Vary on 11 bits, identify 51 PNB’s, recover subkey of 29 bits in 255.

Grain-128 with 180/256 rounds:
Vary on 7 bits, identify 18 PNB’s, recover key in 2124.

Simon Fischer Analysis of Stream Ciphers 39 / 43



Conclusions

Simon Fischer Analysis of Stream Ciphers 40 / 43



Conclusions

There is a need for stream ciphers in lightweight applications.

LFSR-based designs can be vulnerable to algebraic attacks.

Replacing LFSR with TF was not very successful.

For other nonlinear driving devices, analysis is difficult for both designer
and attacker.

Some unique designs are very promising.
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Thank you!
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