
Chosen IV Statistical Analysis for

Key Recovery Attacks on Stream Ciphers

Simon Fischer1, Shahram Khazaei2, and Willi Meier1

1 FHNW, Windisch, Switzerland
2 EPFL, Lausanne, Switzerland

Abstract. A recent framework for chosen IV statistical distinguishing analysis of stream
ciphers is exploited and formalized to provide new methods for key recovery attacks. As an
application, a key recovery attack on simplified versions of two eSTREAM Phase 3 candidates
is given: For Grain-128 with IV initialization reduced to up to 180 of its 256 iterations, and for
Trivium with IV initialization reduced to up to 672 of its 1152 iterations, it is experimentally
demonstrated how to deduce a few key bits. Evidence is given that the present analysis is not
applicable on Grain-128 or Trivium with full IV initialization.

Key words: Stream ciphers, Chosen IV analysis, eSTREAM, Grain, Trivium

1 Introduction

Synchronous stream ciphers are symmetric cryptosystems which are suitable in soft-
ware applications with high throughput requirements, or in hardware applications
with restricted resources (such as limited storage, gate count, or power consump-
tion). For synchronization purposes, in many protocols the message is divided into
short frames where each frame is encrypted using a different publicly known initializa-
tion vector (IV) and the same secret key. Stream ciphers should be designed to resist
attacks that exploit many known keystreams generated by the same key but different
chosen IVs. In general, the key and the IV is mapped to the initial state of the stream
cipher by an initialization function (and the automaton produces then the keystream
bits, using an output and update function). The security of the initialization function
relies on its mixing (or diffusion) properties: each key and IV bit should affect each
initial state bit in a complex way. This can be achieved with a round-based approach,
where each round consists of some nonlinear operations. On the other hand, using
a large number of rounds or highly involved operations is inefficient for applications
with frequent resynchronizations. Limited resources of hardware oriented stream ci-
phers may even preclude the latter, and good mixing should be achieved with simple
Boolean functions and a well-chosen number of rounds. In [4, 8, 9, 6], a framework
for chosen IV statistical analysis of stream ciphers is suggested to investigate the
structure of the initialization function. If mixing is not perfect, then the initializa-
tion function has an algebraic normal form (ANF) which can be distinguished from
a uniformly random Boolean function. Particularly the coefficients of high degree
monomials in the IV (i.e. the product of many IV bits) are suspect to some biased
distribution: it will take many operations before all these IV bits meet in the same
memory cell. In [4], this question was raised: ”It is an open question how to utilize
these weaknesses of state bits to attack the cipher.”. The aim of this paper is to con-
tribute to this problem and present a framework to mount key recovery attacks. As

in [4, 8] one selects a subset of IV bits as variables. Assuming all other IV values as
well as the key fixed, one can write a keystream symbol as a Boolean function. By
running through all possible values of these bits and generating a keystream output
each time, one can compute the truth table of this Boolean function. Each coefficient
in the algebraic normal form of this Boolean function is parametrized by the bits of
the secret key. Based on the idea of probabilistic neural bits from [1], we now examine
if every key bit in the parametrized expression of a coefficient does occur, or more
generally, how much influence each key bit does have on the value of the coefficient.
If a coefficient depends on less than all key bits, this fact can be exploited to filter
those keys which do not satisfy the imposed value for the coefficient. It is shown
in [10] that for eSTREAM Phase 3 candidate Trivium with IV initialization reduced
to 576 iterations, linear relations on the key bits can be derived for well chosen sets
of variable IV bits. Our framework is more general, as it works with the concept of
(probabilistic) neutral key bits, i.e. key bits which have no influence on the value of
a coefficient with some (high) probability. This way, we can get information on the
key for many more iterations in the IV initialization of Trivium, and similarly for the
eSTREAM Phase 3 candidate Grain-128. On the other hand, extensive experimental
evidence indicates clear limits to our approach: With our methods, it is unlikely to
get information on the key faster than exhaustive key search for Trivium or Grain-128

with full IV initialization.

2 Problem Formalization

Suppose that we are given a fixed Boolean function F (K, V) : {0, 1}n × {0, 1}m →
{0, 1}. An oracle chooses a random and unknown K = (k0, . . . , kn−1) and returns us
the value of z = F (K, V) for every query V = (v0, . . . , vm−1) of our choice (and fixed
K). The function F could stand e.g. for the Boolean function which maps the key K
and IV V of a stream cipher to the (let say) first output bit. Our goal as an adversary
is to determine the unknown key K (or to distinguish F from a random function) in
the chosen IV attack model only by dealing with the function F . If F mixes its inputs
in a proper way, then one needs to try all 2n possible keys in the worst case by sending
O(n) queries to the oracle in order to find the correct key (since each query gives one
bit information about the key for a balanced F). Here, we are going to investigate
methods which can potentially lead to faster reconstruction of the key in the case
where the function F does not properly mix its inputs. This could occur for example
when the initialization phase of a stream cipher is performed through an iterated
procedure for which the number of iterations has not been suitably chosen. On the
other hand these methods may help to give the designers more insight to choose
the required number of iterations. The existence of faster methods for finding the
unknown key K highly depends on the structure of F . It may be even impossible to
uniquely determine the key K. Let F (K, V) =

∑

κ Cκ(V)Kκ where Kκ = kκ0

0 · · · k
κn−1

n−1

for the multi-index κ = (κ0, . . . , κn−1) (which can also be identified by its integer
representation). Then the following lemma makes this statement more clear.

Lemma 1. No adversary can distinguish between the two keys K1 and K2 for which
Kκ

1 = Kκ
2 for all κ ∈ {0, 1}n such that Cκ(V) 6= 0.

Indeed, it is only possible to determine the values of {Kκ|∀κ, Cκ(V) 6= 0} which is
not necessarily equivalent to determination of K. As a consequence of Lemma 1, the
function F divides {0, 1}n into equivalence classes: K1, K2, . . . ,KJ (with J ≤ 2n).
See Ex. 3 as an application on a reduced version of Trivium.

3 Scenarios of Attacks

The algebraic description of the function F (K, V) is too complex in general to be
amenable to direct analysis. Therefore, from the function F (K, V) and with the
partition V = (U, W) we derive simpler Boolean functions C(K, W) with the help
of the oracle. In our main example, C(K, W) is a coefficient of the algebraic normal
form of the function deduced from F by varying over the bits in U only, see Sect. 4
for more details. If this function C(K, W) does not have a well-distributed algebraic
structure, it can be exploited in cryptanalytic attacks. Let us investigate different
scenarios:

1. If C(K, W) is imbalanced for (not necessarily uniformly) random W and many
fixed K, then the function F (or equivalently the underlying stream cipher) with
unknown K can be distinguished from a random one, see [4, 8, 9, 6].

2. If C(K, W) is evaluated for some fixed W , then C(K, W) is an expression in the
key bits only. In [10], it was shown that in Trivium case for reduced iterations,
linear relations on the key bits can be derived for a well chosen IV part.

3. If C(K, W) has many key bits, which have (almost) no influence on the values
of C(K, W), a suitable approximation may be identified and exploited for key
recovery attacks, see [1]. This is the target scenario of this paper and will be
discussed in detail.

Scenario 1 has already been discussed in the introduction. In scenario 2, the under-
lying idea is to find a relation C(K, W), evaluated for some fixed W , which depends
only on a subset of t (< n) key bits. The functional form of this relation can be
determined with 2t evaluations of C(K, W). By trying all 2t possibilities for the in-
volved t key bits, one can filter those keys which do not satisfy the imposed relation.
The complexity of this precomputation is 2t times needed to compute C(K, W), see
Sect. 4. More precisely, if p = Pr{C(K, W) = 0} for the fixed W , the key space
is filtered by a factor of H(p) = p2 + (1 − p)2. For example, in the case of a linear
function it is p = H(p) = 1/2. In addition, if several imposed relations on the key bits
are available, it is easier to combine them to filter wrong keys if they have a simple
structure, see e.g. [10]. In scenario 3, the main idea is to find a function A(L, W)
which depends on a key part L of t bits, and which is correlated to C(K, W) with
correlation coefficient ε, that is Pr{C(K, W) = A(L, W)} = 1/2(1 + ε). Then, by
asking the oracle N queries we get some information (depending on the new equiv-
alence classes produced by A) about t bits of the secret K in time N2t by carefully
analyzing the underlying hypothesis testing problem. We will proceed by explaining
how to derive such functions C from the coefficients of the ANF of F in Sect. 4, and
how to find such functions A using the concept of probabilistic neutral bits in Sect. 5.

4 Derived Functions from Polynomial Description

The function F can be written in the form F (K, V) =
∑

ν,κ Cν,κV
νKκ with binary

coefficients Cν,κ. We can make a partition of the IV according to V = (U, W) and
ν = (α, β) with l-bit segments U and α, and (m − l)-bit segments W and β . This
gives the expression F (K, V) =

∑

α,β,κ C(α,β),κU
αW βKκ =

∑

α Cα(K, W)Uα where

Cα(K, W) =
∑

β,κ C(α,β),κW
βKκ. For every α ∈ {0, 1}l, the function Cα(K, W) can

serve as a function C derived from F . Here is a toy example to illustrate the notation:

Example 1. Let n = m = 3 and F (K, V) = k1v1 ⊕ k2v0v2 ⊕ v2. Let U := (v0, v2) of
l = 2 bits and W := (v1) of m − l = 1 bit. Then C0(K, W) = k1v1, C1(K, W) = 0,
C2(K, W) = 1, C3(K, W) = k2. ⊓⊔

Note that an adversary with the help of the oracle can evaluate Cα(K, W) for the
unknown key K at any input W ∈ {0, 1}m−l for every α ∈ {0, 1}l by sending at most
2l queries to the oracle. In other words, the partitioning of V has helped us to define
a computable function Cα(K, W) for small values of l, even though the explicit form
of Cα(K, W) remains unknown. To obtain the values Cα(K, W) for all α ∈ {0, 1}l,
an adversary asks for the output values of all 2l inputs V = (U, W) with the fixed
part W . This gives the truth table of a Boolean function in l variables for which the
coefficients of its ANF (i.e. the values of Cα(K, W)) can be found in time l2l and
memory 2l using the Walsh-Hadamard transform. Alternatively, a single coefficient
Cα(K, W) for a specific α ∈ {0, 1}l can be computed by XORing the output of F
for all 2|α| inputs V = (U, W) for which each bit of U is at most as large as the
corresponding bit of α. This bypasses the need of 2l memory.

One can expect that a subset of IV bits receives less mixing during the initial-
ization process than other bits. These IV bits are called weak, and they would be an
appropriate choice of U in order to amplify the non-randomness of C. However, it is
an open question how to identify weak IV bits by systematic methods.

5 Functions Approximation

We are interested in the approximations of a given function C(K, W) : {0, 1}n ×
{0, 1}m−l → {0, 1} which depend only on a subset of key bits. To this end we make
an appropriate partition of the key K according to K = (L, M) with L containing t
significant key bits and M containing the remaining (n− t) non-significant key bits,
and construct the function A(L, W). We also use the term subkey to refer to the set
of significant key bits. Such a partitioning can be identified by systematic methods,
using the concept of probabilistic neutral bits from [1]:

Definition 1. The neutrality measure of the key bit ki with respect to the function
C(K, W) is defined as γi, where Pr = 1

2
(1+ γi) is the probability (over all K and W)

that complementing the key bit ki does not change the output of C(K, W).

In practice, we will set a threshold γ, such that all key bits with |γi| < γ are included
in the subkey L (i.e. the probabilistic neutral key bits are chosen according to the
individual values of their neutrality measure). The approximation A(L, W) could be

defined by C(K, W) with non-significant key bits M fixed to zero. Here is another
toy example to illustrate the method:

Example 2. Let n = m = 3, l = 2 and C(K, W) = k0k1k2v0v1 ⊕ k0v1 ⊕ k1v0. For
uniformly random K and W , we find γ0 = 1/8, γ1 = 1/8, γ2 = 7/8. Consequently,
it is reasonable to use L := (k0, k1) as the subkey. With fixed k2 = 0, we obtain the
approximation A(L, W) = k0v1 ⊕ k1v0 which depends on t = 2 key bits only. ⊓⊔

Note that, if M consists only of neutral key bits (with γi = 1), then the approximation
A is exact, because C(K, W) does not depend on these key bits. In [1] the notion of
probabilistic neutral bits was used to derive an approximation function A in the case
of W = V and C = F which lead to the first break of Salsa20/8.

6 Description of the Attack

In the precomputation phase of the attack, we need a suitable partitioning of the
IV and the key (i.e. a function C and an approximation A). The weak IV bits are
often found by a random search, while the weak key bits can be easily found with the
neutrality measure for some threshold γ. Given C and A, we can find a small subset of
candidates for the subkey L with a probabilistic guess-and-determine attack. In order
to filter the set of all 2t possible subkeys into a smaller set, we need to distinguish
a correct guess of the subkey L̂ from an incorrect one. Our ability in distinguishing
subkeys is related to the correlation coefficient between A(L̂, W) and C(K, W) with
K = (L, M) under the following two hypotheses. H0 : the guessed part L̂ is correct,
and H1 : the guessed part L̂ is incorrect. More precisely, the values of ε0 and ε1

defined in the following play a crucial role:

Pr
W
{A(L̂, W) = C(K, W)|K = (L̂, M)} =

1

2
(1 + ε0) (1)

Pr
L̂,W

{A(L̂, W) = C(K, W)|K = (L, M)} =
1

2
(1 + ε1) . (2)

In general, both ε0 and ε1 are random variables, depending on the key. In the case that
the distributions of ε0 and ε1 are separated, we can achieve a small non-detection prob-
ability pmis and false alarm probability pfa by using enough samples. In the special case
where ε0 and ε1 are constants with ε0 > ε1, the optimum distinguisher is Neyman-
Pearson [2]. Then, N values of C(K, W) for different W (assuming that the samples
C(K, W) are independent) are sufficient to obtain pfa = 2−c and pmis = 1.3 × 10−3,
where

N ≈

(

√

2c(1 − ε2
0) ln 2 + 3

√

1 − ε2
1

ε1 − ε0

)2

. (3)

The attack will be successful with probability 1 − pmis and the complexity is as
follows: For each guess L̂ of the subkey, the correlation ε of A(L̂, W) ⊕ C(K, W)
must be computed, which requires computation of the coefficients A(L̂, W) by the

adversary, and computation of the coefficient C(K, W) through the oracle, for the
same N values of W , having a cost of N2l at most. This must be repeated for all
2t possible guesses L̂. The set of candidates for the subkey L has a size of about
pfa2

t = 2t−c. The whole key can then be verified by an exhaustive search over the
key part M with a cost of 2t−c2n−t evaluations of F . The total complexity becomes
N2l2t + 2t−c2n−t = N2l+t + 2n−c. Using more than one function C or considering
several chosen IV bits U may be useful to reduce complexity; however, we do not
deal with this case here.

Remark 1. In practice, the values of ε0 and ε1 are key dependent. If the key is consid-
ered as a random variable, then ε0 and ε1 are also random variables. However, their
distribution may not be fully separated, and hence a very small pmis and pfa may not
be possible to achieve. We propose the following non-optimal distinguisher: first, we
choose a threshold ε⋆

0 such that pǫ = Pr{ε0 > ε⋆
0} has a significant value, e.g. 1/2.

We also identify a threshold ε⋆
1, if possible, such that Pr{ε1 < ε⋆

1} = 1. Then, we
estimate the sample size using Eq. 3 by replacing ε0 and ε1 by ε⋆

0 and ε⋆
1, respectively,

to obtain pfa ≤ 2−c and effective non-detection probability pmis ·pǫ ≈ 1/2. If ε⋆
0 and ε⋆

1

are close, then the estimated number of samples becomes very large. In this case, it
is better to choose the number of samples intuitively, and then estimate the related
pfa.

Remark 2. It is reasonable to assume that a false subkey L̂, which is close to the
correct subkey, may lead to a larger value of ε. Here, the measure for being ”close”
could be the neutrality measure γi and the Hamming weight: if only a few key bits
on positions with large γi are false, one would expect that ε is large. However, we
only observed an irregular (i.e. not continuous) deviation for very close subkeys. The
effect on pfa is negligible because subkeys with difference of low weight are rare.

7 Application to Trivium

The stream cipher Trivium [3] is one of the eSTREAM candidates with a 288-bit
internal state consisting of three shift registers of different lengths. At each round,
a bit is shifted into each of the three shift registers using a non-linear combination
of taps from that and one other register; and then one bit of output is produced. To
initialize the cipher, the n = 80 key bits and m = 80 IV bits are written into two of
the shift registers, with the remaining bits being set to a fixed pattern. The cipher
state is then updated R = 18 × 64 = 1152 times without producing output in order
to provide a good mixture of the key and IV bits in the initial state. We consider the
Boolean function F (K, V) which computes the first keystream bit after r rounds of
initialization. In [4], Trivium was analyzed with chosen IV statistical tests and non-
randomness was detected for r = 10 × 64, 10.5 × 64, 11 × 64, 11.5 × 64 rounds with
l = 13, 18, 24, 33 IV bits, respectively. In [10], the key recovery attack on Trivium was
investigated with respect to scenario 2 (see Sect. 3) for r = 9 × 64. Here we provide
more examples for key recovery attack with respect to scenario 3 for r = 10× 64 and
r = 10.5 × 64. In the following two examples, weak IV bits have been found by a
random search. We first concentrate on equivalence classes of the key:

Example 3. For r = 10×64 rounds, a variable IV part U with the l = 10 bit positions
{34, 36, 39, 45, 63, 65, 69, 73, 76, 78}, and the coefficient with index α = 1023,
we could experimentally verify that the derived function Cα(K, W) only depends on
t = 10 key bits L with bit positions {15, 16, 17, 18, 19, 22, 35, 64, 65, 66}. By assigning
all 210 different possible values to these 10 key bits and putting those L’s which gives
the same function Cα(K, W) (by trying enough samples of W), we could determine
the equivalence classes for L with respect to Cα. Our experiment shows the existence
of 65 equivalence classes: one with 512 members for which k15k16 + k17 + k19 = 0
and 64 other classes with 8 members for which k15k16 + k17 + k19 = 1 and the vector
(k18, k22, k35, k64, k65, k66) has a fixed value. This shows that Cα provides 1

2
×1+ 1

2
×7 =

4 bits of information about the key in average. ⊓⊔

Example 4. For r = 10×64 rounds, a variable IV part U with the l = 11 bit positions
{1, 5, 7, 9, 12, 14, 16, 22, 24, 27, 29}, and the coefficient with index α = 2047,
the derived function Cα(K, W) depends on all 80 key bits. A more careful look at
the neutrality measure of the key bits reveals that max(γi) ≈ 0.35 and only 7 key
bits have a neutrality measure larger than γ = 0.18, which is not enough to get a
useful approximation A(L, W) for an attack. However, we observed that Cα(K, W)
is independent of the key for W = 0, and more generally the number of significant
bits depends on |W |. ⊓⊔

It is difficult to find a good choice of variable IV’s for larger values of r, using a
random search. The next example shows how we can go a bit further with some
insight.

Example 5. Now we consider r = 10.5 × 64 = 10 × 64 + 32 = 672 rounds. The
construction of the initialization function of Trivium suggests that shifting the bit
positions of U in Ex. 4 may be a good choice. Hence we choose U with the l = 11
bit positions {33, 37, 39, 41, 44, 46, 48, 54, 56, 59, 61}, and α = 2047. In this case,
Cα(K, W) for W = 0 is independent of 32 key bits, and p = Pr{Cα(K, 0) = 1} ≈ 0.42.
This is already a reduced attack which is 1/H(p) ≈ 1.95 times faster than exhaustive
search. ⊓⊔

The following example shows how we can connect a bridge between scenarios 2 and
3 and come up with an improved attack.

Example 6. Consider the same setup as in Ex. 5. If we restrict ourself to W with
|W | = 5 and compute the value of γi conditioned over these W , then maxi(γi) ≈ 0.68.
Assigning all key bits with |γi| < γ = 0.25 as significant, we obtain a key part L with
the t = 29 bit positions {1, 3, 10, 14, 20, 22, 23, 24, 25, 26, 27, 28, 31, 32, 34, 37, 39,
41, 46, 49, 50, 51, 52, 57, 59, 61, 63, 68, 74}. Our analysis of the function A(L, W)
shows that for about 44% of the keys we have ε0 > ε⋆

0 = 0.2 when the subkey is
correctly guessed. If the subkey is not correctly guessed, we observe ε1 < ε⋆

1 = 0.15.
Then, according to Eq. 3 the correct subkey of 29 bits can be detected using at
most N ≈ 215 samples, with time complexity N2l+t ≈ 255. Note that the condition
N <

(

69
5

)

is satisfied here. ⊓⊔

8 Application to Grain

The stream cipher Grain-128 [7] consists of an LFSR, an NFSR and an output function
h(x). It has n = 128 key bits, m = 96 IV bits and the full initialization function has
R = 256 rounds. We again consider the Boolean function F (K, V) which computes
the first keystream bit of Grain-128 after r rounds of initialization. In [4], Grain-128 was
analyzed with chosen IV statistical tests. With N = 25 samples and l = 22 variable
IV bits, they observed a non-randomness of the first keystream bit after r = 192
rounds. They also observed a non-randomness in the initial state bits after the full
number of rounds. In [8], a non-randomness up to 313 rounds was reported (without
justification). In this section we provide key recovery attack for up to r = 180 rounds
with slightly reduced complexity compared with exhaustive search. In the following
example, weak IV bits for scenario 2 have been found again by a random search.

Example 7. Consider l = 7 variable IV bits U with bit positions {2, 6, 8, 55, 58,
78, 90}. For the coefficient with index α = 127 (corresponding to the monomial of
maximum degree), a significant imbalance for up to r = 180 rounds can be detected:
the monomial of degree 7 appears only with a probability of p < 0.2 for 80% of the
keys. Note that in [4], the attack with l = 7 could only be applied to r = 160 rounds,
while our improvement comes from the inclusion of weak IV bits. ⊓⊔

In the following examples, our goal is to show that there exists some reduced key
recovery attack for up to r = 180 rounds on Grain-128.

Example 8. Consider again the l = 7 IV bits U with bit positions {2, 6, 8, 55, 58, 78,
90}. For r = 150 rounds we choose the coefficient with index α = 117 and include
key bits with neutrality measure less than γ = 0.98 in list of the significant key bits.
This gives a subkey L of t = 99 bits. Our simulations show that ε0 > ε⋆

0 = 0.95
for about 95% of the keys, hence pmis = 0.05. On the other hand, for 128 wrong
guesses of the subkey with N = 200 samples, we never observed that ε1 > 0.95,
hence pfa < 2−7. This gives an attack with time complexity N2t+l + 2npfa ≈ 2121

which is an improvement of a factor of (at least) 1/pfa = 27 compared to exhaustive
search. ⊓⊔

Example 9. With the same choice for U as in Ex. 7 and 8, we take α = 127 for r = 180
rounds. We identified t = 110 significant key bits for L. Our simulations show that
ε0 > ε⋆

0 = 0.8 in about 30% of the runs when the subkey is correctly guessed. For
128 wrong guesses of the subkey with N = 128 samples, we never observed that
ε1 > 0.8. Here we have an attack with time complexity N2t+l + 2npfa ≈ 2124, i.e. an
improvement of a factor of 24. ⊓⊔

9 Conclusion

A recent framework for chosen IV statistical distinguishers for stream ciphers has
been exploited to provide new methods for key recovery attacks. This is based on a
polynomial description of output bits as a function of the key and the IV. A deviation
of the algebraic normal form (ANF) from random indicates that not every bit of the

key or the IV has full influence on the value of certain coefficients in the ANF. It
has been demonstrated how this can be exploited to derive information on the key
faster than exhaustive key search through approximation of the polynomial descrip-
tion and using the concept of probabilistic neutral key bits. Two applications of our
methods through extensive experiments have been given: A reduced complexity key
recovery for Trivium with IV initialization reduced to 672 of its 1152 iterations, and a
reduced complexity key recovery for Grain-128 with IV initialization reduced to 180
of its 256 iterations. This answers positively the question whether statistical distin-
guishers based on polynomial descriptions of the IV initialization of a stream cipher
can be successfully exploited for key recovery. On the other hand, our methods are
not capable to provide reduced complexity key recovery of the eSTREAM Phase 3
candidates Trivium and Grain-128 with full initialization.

Acknowledgments

The first author is supported by the National Competence Center in Research on
Mobile Information and Communication Systems (NCCR-MICS), a center of the
Swiss National Science Foundation under grant number 5005-67322. The third author
is supported by Hasler Foundation www.haslerfoundation.ch under project number
2005. We would like to thank the anonymous reviewers for their comments.

References

1. J.-Ph. Aumasson, S. Fischer, S. Khazaei, W. Meier, and C. Rechberger. New Features of Latin Dances:
Analysis of Salsa, ChaCha, and Rumba. In FSE 2008.

2. T. Cover and J.A. Thomas. Elements of Information Theory. Wiley series in Telecommunication. Wiley,
1991.

3. C. de Cannière and B. Preneel. TRIVIUM: A Stream Cipher Construction Inspired by Block Cipher
Design Principles. In ISC 2006. See also [5].

4. H. Englund, T. Johansson, and M. S. Turan. A Framework for Chosen IV Statistical Analysis of Stream
Ciphers. In INDOCRYPT 2007. See also Tools for Cryptoanalysis 2007.

5. eSTREAM - The ECRYPT Stream Cipher Project - Phase 3. See www.ecrypt.eu.org/stream.
6. E. Filiol. A New Statistical Testing for Symmetric Ciphers and Hash Functions. In ICICS 2002.
7. M. Hell, T. Johansson, A. Maximov, and W. Meier. A Stream Cipher Proposal: Grain-128. In ISIT

2006.
8. S. O’Neil. Algebraic Structure Defectoscopy. In Cryptology ePrint Archive, Report 2007/378. See also

http://www.defectoscopy.com.
9. M.-J. O. Saarinen. Chosen-IV Statistical Attacks Against eSTREAM Ciphers. In SECRYPT 2006.

10. M. Vielhaber. Breaking ONE.FIVIUM by AIDA an Algebraic IV Differential Attack. In Cryptology
ePrint Archive, Report 2007/413.

www.haslerfoundation.ch
www.ecrypt.eu.org/stream
http://www.defectoscopy.com

