
Algebraic Immunity of S-boxes

and Augmented Functions

Simon Fischer and Willi Meier

FHNW, 5210 Windisch (Switzerland)

Abstract. In this paper, the algebraic immunity of S-boxes and augmented functions of
stream ciphers is investigated. Augmented functions are shown to have some algebraic prop-
erties that are not covered by previous measures of immunity. As a result, efficient algebraic
attacks with very low data complexity on certain filter generators become possible. In a similar
line, the algebraic immunity of the augmented function of the eSTREAM candidate Trivium is
experimentally tested. These tests suggest that Trivium has some immunity against algebraic
attacks on augmented functions.

Key words: S-box, Stream Cipher, Augmented Function, Algebraic Attack, Filter Gen-
erator, Trivium

1 Introduction

Algebraic attacks can be efficient against stream ciphers based on LFSR’s [12], and
potentially against block ciphers based on S-boxes [13]. In the case of stream ciphers,
the algebraic immunity AI of the filter function is a measure for the complexity of
conventional algebraic attacks. However, it turned out in some cases that large AI did
not help to prevent fast algebraic attacks (FAA’s). It is an open question if immunity
against FAA’s is a sufficient criterion for any kind of algebraic attacks on stream
ciphers. In the case of block ciphers, the algebraic immunity of S-boxes is a measure
for the complexity of a very general type of algebraic attacks, considering implicit or
conditional equations [13, 2]. Present methods for computation of AI of S-boxes are
not very efficient, only about n = 20 variables are computationally feasible (except
for power mappings, see [20,11]).

In this paper, we integrate the general approach for S-boxes in the context of
stream ciphers and generalise the concept of algebraic immunity of stream ciphers
(see Open Problem 7 in [7]). More precisely, we investigate conditional equations
for augmented functions of stream ciphers and observe some algebraic properties (to
be used in an attack), which are not covered by the previous definitions of AI. As a
consequence, immunity against FAA’s is not sufficient to prevent any kind of algebraic
attack: Depending on the Boolean functions used in a stream cipher, we demonstrate
that algebraic properties of the augmented function allow for attacks which need much
less known output than established algebraic attacks. This induces some new design
criteria for stream ciphers. Time complexity of our attacks is derived by intrinsic
properties of the augmented function. Our framework can be applied to a large variety
of situations. We present two applications (which both have been implemented). First,
we describe efficient attacks on some filter generators. For example, we can efficiently
recover the state of a filter generator based on certain Boolean functions when an
amount of output data is available which is only linear in the length of the driving

LFSR. This should be compared to the data complexity of conventional algebraic
attacks, which is about

(

n
e

)

, where n is the length of the LFSR and e equals the
algebraic immunity of the filter function. Our investigation of the augmented function
allows to contribute to open problems posed in [15], and explains why algebraic
attacks using Gröbner bases against filter generators are in certain cases successful
even for a known output segment only slightly larger than the LFSR length. In
a second direction, a large scale experiment carried out with the eSTREAM focus
candidate Trivium suggests some immunity of this cipher against algebraic attacks
on augmented functions. This experiment becomes feasible as for Trivium with its
288-bit state one can find preimages of 144-bit outputs in polynomial time.

Augmented functions of LFSR-based stream ciphers have previously been studied,
e.g. in [1], [16] and [19], where it had been noticed that the augmented function can
be weaker than a single output function, with regard to (conditional) correlation
attacks as well as to inversion attacks. However, for the first time, we analyse the AI
of (sometimes quite large) augmented functions. Surprisingly, augmented functions
did not receive much attention in this context yet.

The paper is organised as follows: In Sect. 2, we investigate some algebraic proper-
ties of S-boxes. Our general ideas of algebraic attacks on augmented functions (which
are some special S-boxes) are presented in Sec. 3. In Sect. 4, this framework is dis-
cussed for filter generators. Sect. 5 and Sect. 6 contain applications of our method,
namely for some specific filter generators and for eSTREAM candidate Trivium.

2 Algebraic Properties of S-boxes

Let F denote the finite field GF(2), and consider the vectorial Boolean function (or
S-box) S : Fn → F

m with S(x) = y, where x := (x1, . . . , xn) and y := (y1, . . . , ym).
In the case of m = 1, the S-box reduces to a Boolean function, and in general, the
S-box consists of m Boolean functions Si(x). These functions give rise to the explicit
equations Si(x) = yi. Here, we assume that y is known and x is unknown.

2.1 Implicit Equations

The S-box can hide implicit equations, namely F (x, y) = 0 for each x ∈ F
n and

with y = S(x). The algebraic normal form of such an equation is denoted F (x, y) =
∑

cα,βxαyβ = 0 mod 2, with coefficients cα,β ∈ F, multi-indices α, β ∈ F
n (which

can likewise be identified by their integers) and the notation xα := (xα1

1 · · ·xαn

n).
In the context of algebraic attacks, it is of interest to focus on implicit equations
with special structure, e.g. on sparse equations or equations of small degree. Let the
degree in x be d := max{|α|, cα,β = 1} ≤ n with the weight |α| of α, and consider an
unrestricted degree for the known y, hence max{|β|, cα,β = 1} ≤ m. The maximum
number of monomials (or coefficients) in an equation of degree d corresponds to 2mD,
where D :=

∑d
i=0

(

n
i

)

. In order to determine the existence of an implicit equation of
degree d, consider a matrix M in F of size 2n × 2mD. Each row corresponds to an
input x, and each column corresponds to an evaluated monomial (with some fixed
order). If the number of columns in M is larger than the number of rows, then linearly
dependent columns (i.e. monomials) exist, see [9,13]. The rank of M determines the

number of solutions, and the solutions correspond to the kernel of MT . Any non-zero
implicit equation (which holds for each input x) may then depend on x and y, or on
y only. If it depends on x and y, then the equation may degenerate for some values
of y. For example, x1y1 + x2y1 = 0 degenerates for y1 = 0.

2.2 Conditional Equations

As the output is assumed to be known, one could investigate equations which are
conditioned by the output y, hence Fy(x) = 0 for each preimage x ∈ S−1(y) and of
degree d in x. The number of preimages is denoted Uy := |S−1(y)|, where Uy = 2n−m

for balanced S and m ≤ n. Notice that conditional equations for different outputs
y need not be connected in a common implicit equation, and one can find an opti-
mum equation (i.e. an equation of minimum degree) for each output y. Degenerated
equations are not existing in this situation, and the corresponding matrix My has a
reduced size of Uy × D. Similar to the case of implicit equations, one obtains:

Proposition 1. Consider an S-box S : F
n → F

m and let S(x) = y. Then, the
number of (independent) conditional equations of degree at most d for some y is
Ry = D− rank(My). A sufficient criterion for the existence of a non-zero conditional
equation is 0 < Uy < D.

The condition Ry > 0 requires some minimum value of d, which can depend on y. As
already proposed in [2], this motivates the following definition of algebraic immunity
for S-boxes:

Definition 1. Consider an S-box S : Fn → F
m. Given some fixed output y, let d be

the minimum degree of a non-zero conditional equation Fy(x) = 0 which holds for all
x ∈ S−1(y). Then the algebraic immunity AI of S is defined by the minimum of d
over all y ∈ F

m.

The AI can be bounded, using the sufficient condition of Prop. 1. Let d0 be the
minimum degree such that D > 2n−m. If the S-box is surjective, then there exists at
least one y with a non-zero conditional equation of degree at most d0, hence AI ≤ d0.
In addition, the block size m of the output could be considered as a parameter (by
investigating truncated S-boxes Sm, corresponding to partial conditioned equations
for S). Let m0 := ⌊n− log2 D + 1⌋ for some degree d. Then, the minimum block size
m to find non-zero conditional equations of degree at most d is bounded by m0. See
Tab. 1 for some numerical values of m0.

Table 1. Theoretical block size m0 for different parameters n and d.

d
n 16 18 20 32 64 128

1 12 14 16 27 58 121
2 9 11 13 23 53 115
3 7 9 10 20 49 110

A single output y is called weak, if non-zero conditional equations of degree d exist
for Uy ≫ D (or if the output is strongly imbalanced). This roughly corresponds to
the condition d ≪ d0, or m ≪ m0.

2.3 Algorithmic Methods

As already mentioned in [7], memory requirements to determine the rank of M are
impractical for about n > 20. In the case of conditional equations, the matrix My can
be much smaller, but the bottleneck is to compute an exhaustive list of preimages,
which requires a time complexity of 2n. However, one could use a probabilistic variant
of this basic method: Instead of determining the rank of My which contains all Uy

inputs x, one may solve for a smaller matrix M ′

y with V < Uy random inputs. Then,
one can determine the non-existence of a solution: If no solution exists for M ′

y, then
no solution exists for My either. On the other hand, if one or more solutions exist for
M ′

y, then they hold true for the subsystem of V inputs, but possibly not for all Uy

inputs. Let the probability p be the fraction of preimages that satisfy the equation
corresponding to such a solution. With the heuristical argument (1 − p)V < 1, we
expect that p > 1 − 1/V . However, this argument holds only for V > D, because
otherwise, there are always at least D − V solutions (which could be balanced).
Consequently, if V is a small multiple of D, the probability can be quite close to
one. For this reason, all solutions of the smaller system can be useful in later attacks.
Determining only a few random preimages can be very efficient: In a naive approach,
time complexity to find a random preimage of an output y is about 2n/Uy (which is
2m for balanced S), and complexity to find D preimages is about 2nD/Uy. This is an
improvement compared to the exact method if Uy ≫ D, i.e. equations can be found
efficiently for weak outputs. Memory requirements of the probabilistic algorithm are
about CM = D2, and time complexity is about CT = D2m +D3. Computation of AI
requires about CT = D2m + D32m = O(D32m).

3 Algebraic Attacks based on the Augmented Function

In this section, we focus on algebraic cryptanalysis of S-boxes in the context of stream
ciphers. Given a stream cipher, one may construct an S-box as follows:

Definition 2. Consider a stream cipher with internal state x of n bits, an update
function L, and an output function f which outputs one bit of keystream in a single
iteration. Then, the augmented function Sm is defined by

Sm : Fn → F
m

x 7→ (f(x), f(L(x)), . . . , f(Lm−1(x)) .
(1)

The update L can be linear (e.g. for filter generators), or nonlinear (e.g. for Trivium).
The input x correspond to the internal state at some time t, and the output y cor-
responds to an m-bit block of the known keystream. Notice that m is a very natural
parameter here. The goal is to recover the initial state x by algebraic attacks, using
(potentially probabilistic) conditional equations Fy(x) = 0 of degree d for outputs y
of the augmented function Sm. This way, one can set up equations for state variables
of different time steps t. In the case of a linear update function L, each equation can
be transformed into an equation of degree d in the initial state variables x. In the
case of a nonlinear update function L, the degree of the equations is increasing with
time. However, the nonlinear part of the update is sometimes very simple, such that

equations for different time steps can be efficiently combined. Finally, the system of
equations in the initial state variables x is solved.

If the augmented function has some weak outputs, then conditional equations
can be found with the probabilistic algorithm of Sect. 2.3, which requires about D
preimages of a single m-bit output. One may ask if there is a dedicated way to
compute random preimages of m-bit outputs in the context of augmented functions.
Any stream cipher as in Def. 2 can be described by a system of equations. Nonlinear
systems of equations with roughly the same number of equations as unknowns are
in general NP-hard to solve. However, due to the special (simple) structure of some
stream ciphers, it may be easy to partially invert the nonlinear system. For example,
given a single bit of output of a filter generator, it is easy to find a state which gives
out this bit. Efficient computation of random preimages for m-bit outputs is called
sampling. The maximal value of m for which states can be sampled without trial and
error is called sampling resistance of the stream cipher. Some constructions have very
low sampling resistance, see [5, 4].

The parameters of our framework are the degree d of equations, and the block-
size m of the output. An optimal tradeoff between these parameters depends on the
algebraic properties of the augmented function. The attack is expected to be efficient,
if:

1. There are many low-degree conditional equations for Sm.
2. Efficient sampling is possible for this block size m.

This measure is well adapted to the situation of augmented functions, and can be
applied to sometimes quite large augmented functions, see Sect. 5 and 6. This way, we
intend to prove some immunity of a stream cipher, or present attacks with reduced
complexity.

4 Generic Scenarios for Filter Generators

Our framework is investigated in-depth in the context of LFSR-based stream ciphers
(and notably for filter generators), which are the main target of conventional and fast
algebraic attacks (see also Appendix A). We describe some elementary conditional
equations induced by annihilators. Then, we investigate different methods for sam-
pling, which are necessary to efficiently set up conditional equations. We suggest a
basic scenario and estimate data complexity of an attack, the scenario is refined and
improved.

4.1 Equations Induced by Annihilators

Let us first discuss the existence of conditional equations of degree d = AI, where AI
is the ordinary algebraic immunity of f here. With m = 1, the number of conditional
equations for y = 0 (resp. y = 1) corresponds to the number of annihilators of
f + 1 (resp. f) of degree d. If one increases m, then all equations originating from
annihilators are involved: For example, if there is 1 annihilator of degree d for both
f and f +1, then the number of equations is expected to be at least m for any m-bit
output y. Notice that equations of fast algebraic attacks are not involved if m is small
compared to n.

4.2 Sampling

Given an augmented function Sm of a filter generator, the goal of sampling is to
efficiently determine preimages x for fixed output y = Sm(x) of m bits. Due to the
special structure of the augmented function, there are some efficient methods for
sampling:

Filter Inversion One could choose a fixed value for the k input bits of the filter,
such that the observed output bit is correct (using a table of the filter function).
This can be done for about n/k successive output bits, until the state is unique. This
way, preimages of an output y of n/k bits can be found in polynomial time, and by
partial search, preimages of larger outputs can be computed. Time complexity to find
a preimage of m > n/k bits is about 2m−n/k, i.e. the method is efficient if there are
only few inputs k.

Linear Sampling In each time step, a number of l linear conditions are imposed on
the input variables of f , such that the filter becomes linear. The linearised filter gives
one additional linear equation for each keystream bit. Notice that all variables can
be expressed by a linear function of the n variables of the initial state. Consequently,
for an output y of m bits, one obtains (l + 1)m (inhomogeneous) linear equations
for n unknowns, i.e. we expect that preimages can be found in polynomial time if
m ≤ n/(l+1). To find many different preimages, one should have several independent
conditions (which can be combined in a different way for each clock cycle).

In practice, sampling should be implemented carefully in order to avoid contradictions
(e.g. with appropriate conditions depending on the keystream), see [5].

4.3 Basic Scenario

We describe a basic scenario for algebraic attacks on filter generators based on the
augmented function: With CD bits of keystream, one has C ′

D = CD − m + 1 (over-
lapping) windows of m bits. Assume that there are R :=

∑

y Ry equations of degree
d for m-bit outputs y. For each window, we have about r := R/2m equations, which
gives a total of N = rC ′

D equations.1 Each equation has at most D monomials in the
initial state variables, so we need about the same number of equations to solve the
system by linearisation. Consequently, data complexity is CD = D/r + m − 1 bits.
The initial state can then be recovered in CT = D3. This should be compared with
the complexity of conventional algebraic attacks CD = 2E/RA and CT = E3, where
e := AI, E :=

∑e
i=0

(

n
i

)

, and RA the number of annihilators of degree e. Notice
that the augmented function may give low-degree equations, which are not visible for
single-bit outputs; this increases information density and may reduce data complex-
ity. Our approach has reduced time complexity if d < e, provided that sampling (and
solving the matrix) is efficient.

1 From a heuristical point of view, the parameter r is only meaningful if the conditional equations are
approximately uniformly distributed over all outputs y.

4.4 Refined Basic Scenario

The basic scenario for filter generators should be refined in two aspects, concerning
the existence of dependent and probabilistic equations: First, with overlapping win-
dows of m bits, it may well happen that the same equation is counted several times,
namely if the equation already exists for a substring of m′ < m bits (e.g. in the
case of equations produced by annihilators). In addition, equations may be linearly
dependent by chance. If this is not considered in the computation of R, one may have
to enlarge data complexity a little bit. Second, one can expect to obtain probabilistic
solutions. However, depending on the number of computed preimages, the probability
p may be large and the corresponding equations can still be used in our framework,
as they increase R and reduce data complexity, but potentially with some more cost
in time. As we need about D (correct and linearly independent) equations to recover
the initial state, the probability p should be at least 1− 1/D (together with our esti-
mation for p, this justifies that the number of preimages should be at least D). In the
case of a contradiction, one could complement a few equations in a partial search and
solve again, until the keystream can be verified. Depending on the actual situation,
one may find an optimal tradeoff in the number of computed preimages. Notice that
our probabilistic attack deduced from an algebraic attack with equations of degree
1 is a powerful variant of a conditional correlation attack, see [19]. A probabilistic
attack with nonlinear equations is a kind of higher order correlation attack, see [8].

4.5 Substitution of Equations

It is possible to further reduce data complexity in some cases. Consider the scenario
where one has N = rC ′

D linear equations. On the other hand, given an annihilator
of degree e := AI, one can set up a system of degree e as in conventional algebraic
attacks. The N linear equations can be substituted into this system in order to
eliminate N variables. This results in a system of D′ :=

∑e
i=0

(

n−N
i

)

monomials,
requiring a data complexity of CD = D′ and time complexity CT = D′3. Notice that
data can be reused in this case, which gives the implicit equation in CD. Obviously, a
necessary condition for the success of this method is rE > 1. A similar improvement
of data complexity is possible for nonlinear equations of degree d. One can multiply
the equations by all monomials of degree e−d in order to obtain additional equations
of degree e, along the lines of XL [14] and Gröbner bases algorithms.

5 First Application: Some Specific Filter Generators

Many conventional algebraic attacks on filter generators require about
(

n
e

)

output
bits where e equals the algebraic immunity of the filter function. On the other hand,
in [15], algebraic attacks based on Gröbner bases are presented, which in a few cases
require only n + ε data. It is an open issue to understand such a behavior from the
Boolean function and the tapping sequence. We present attacks on the corresponding
augmented functions, requiring very low data complexity. This means, we can identify
the source of the above behavior, and in addition, we can use our method also for
other functions.

5.1 Existence of Equations

In this subsection, we give extensive experimental results for different filter genera-
tors. Our setup is chosen as follows: The filter functions are instances of the CanFil

family (see [15]) or the Majority functions. These instances all have five inputs and
algebraic immunity 2 or 3. Feedback taps correspond to a random primitive feedback
polynomial, and filter taps are chosen randomly in the class of full positive differ-
ence sets, see Tab. 4 in Appendix B for an enumerated specification of our setups.
Given a specified filter generator and parameters d and m, we compute the num-
ber Ry of independent conditional equations Fy(x) = 0 of degree d for each output
y ∈ F

m. The overall number of equations R :=
∑

y Ry for n = 20 is recorded in
Tab. 2. Thereby, preimages are computed by exhaustive search in order to exclude
probabilistic solutions.

Table 2. Counting the number of linear equations R for the augmented function of
different filter generators, with n = 20 bit input and m bit output.

Filter m R for setups 6 − 10

CanFil1 14 0 0 0 0 0
15 3139 4211 3071 4601 3844

CanFil2 14 0 0 0 0 0
15 2136 2901 2717 2702 2456

CanFil5 6 0 0 0 2 0
7 0 0 0 8 0
8 0 0 0 24 0
9 0 0 0 64 0

10 6 0 0 163 0
11 113 0 2 476 0
12 960 16 215 1678 29

Majority5 9 0 0 0 2 0
10 1 10 1 18 1
11 22 437 40 148 56

In the case of CanFil1 and CanFil2, linear equations exist only for m ≥ m0 − 1,
independent of the setup. On the other hand, for CanFil5 and Majority5, there exist
many setups where a large number of linear equations already exists for m ≈ n/2,
see Ex. 1. We conclude that the number of equations weakly depends on the setup,
but is mainly a property of the filter function. The situation is very similar for other
values of n, see Appendix C. This suggests that our results can be scaled to larger
values of n. Let us also investigate existence of equations of higher degree: CanFil1

and CanFil2 have AI = 2 and there is 1 annihilator for both f and f + 1, which
means that at least m quadratic equations can be expected for an m-bit output. For
each setup and m < m0 − 1, we observed only few additional equations, whereas the
number of additional equations is exploding for larger values of m. This was observed
for many different setups and different values of n.

Example 1. Consider CanFil5 with n = 20 and setup 9. For the output y = 000000

of m = 6 bits, there are exactly 214 preimages, hence the matrix My has 214 rows

and D = 21 columns for d = 1. Evaluation of My yields a rank of 20, i.e. a nontrivial
solution exists. The explicit solution is Fy(x) = x2 + x4 + x5 + x6 + x10 + x11 + x12 +
x13 + x14 + x15 + x17 = 0. ⊓⊔

5.2 Probabilistic Equations

In the previous subsection, the size n of the state was small enough to compute a
complete set of preimages for some m-bit output y. However, in any practical situation
where n is larger, the number of available preimages is only a small multiple of D,
which may introduce probabilistic solutions. Here is an example with n = 20, where
the probability can be computed exactly:

Example 2. Consider again CanFil5 with n = 20 and setup 9. For the output y =
000000 of m = 6 bits, there are 214 preimages and one exact conditional equation of
degree d = 1. We picked 80 random preimages and determined all (correct or prob-
abilistic) linear conditional equations. This experiment was repeated 20 times with
different preimages. In each run, we obtained between 2 and 4 independent equations
with probabilities p = 0.98, . . . , 1. For example, the (probabilistic) conditional equa-
tion Fy(x) = x2 + x3 + x4 + x7 + x10 + x16 + x17 + x18 = 0 holds with probability
p = 1 − 2−9. ⊓⊔

In the above example, there are only few probabilistic solutions and they have im-
pressively large probability, which makes the equations very useful in an attack. No-
tice that experimental probability is in good agreement with our estimation p >
1−1/80 = 0.9875. The situation is very similar for other parameters. With the above
setup and m = 10, not only y = 000 . . . 0 but a majority of outputs y give rise to
linear probabilistic equations. In the case of CanFil1 and CanFil2, we did not observe
linear equations of large probability for m < m0 − 1. It is interesting to investigate
the situation for larger values of n:

Example 3. Consider CanFil5 with n = 40 and setup 11. For the output y = 000 . . . 0
of m = 20 bits, we determine 200 random preimages. With d = 1, evaluation of
My yields a rank of 30, i.e. 11 (independent) solutions exist. With 2000 random
preimages, we observed a rank of 33, i.e. only 3 solutions of the first system were
detected to be merely probabilistic. An example of an equation is Fy(x) = x1 + x8 +
x10 + x14 + x15 + x18 + x19 + x26 + x31 + x34 = 0. ⊓⊔

The remaining 8 solutions of the above example may be exact, or probabilistic with
very high probability. By sampling, one could find (probabilistic) conditional equa-
tions for much larger values of n. For example, with CanFil5, n = 80, m = 40 and
filter inversion, time complexity to find a linear equation for a weak output is around
232.

5.3 Discussion of Attacks

Our experimental results reveal that some filter functions are very vulnerable to
algebraic attacks based on the corresponding augmented function. For CanFil5 with

n = 20 and setup 9, we observed R = 163 exact equations using the parameters
m = 10 and d = 1, which gives a ratio of r = 0.16. Including probabilistic equations,
this ratio may be even larger. Here, preimages of any y can be found efficiently by
sampling: using filter inversion, a single preimage can be found in 2m−n/k = 26 steps,
and a single equation in around 213 steps. Provided that equations are independent
and the probability is large, data complexity is about CD = (n+1)/r +m− 1 = 140.
The linear equations could also be substituted into the system of degree AI = 2,
which results in a data complexity of about CD = 66. Notice that conventional
algebraic attacks would require CD = E = 211 bits (and time complexity E3). As
we expect that our observation can be scaled, (i.e. that r remains constant for larger
values of n and m = n/2), data complexity is a linear function in n. Considering
time complexity for variable n, the matrix M and the final system of equations can
be solved in polynomial time, whereas sampling is subexponential (and polynomial
in some cases, where linear sampling is possible).

In [15], CanFil5 has been attacked experimentally with n + ε data, where n =
40, . . . , 70 and ε < 10. Our analysis gives a conclusive justification for their observa-
tion. Other functions such as Majority5 could be attacked in a similar way, whereas
CanFil1 and CanFil2 are shown to be much more resistant against this general at-
tack: No linear equations have been found for m < m0 − 1, and only few quadratic
equations.

6 Second Application: Trivium

Trivium [6] is a stream cipher with a state of 288 bits, a nonlinear update and a linear
output. It has a simple algebraic structure, which makes it an interesting candidate
for our framework. We consider the S-box Sm(x) = y, where S is the augmented
function of Trivium, x the state of n = 288 bits, and y the output of m bits. We
will first analyse the sampling of Sm, which is very similar to linear sampling of filter
generators.

6.1 Sampling

The state consists of the 3 registers R1 = (x1, . . . , x93), R2 = (x94, . . . , x177) and
R3 = (x178, . . . , x288). In each clock cycle, a linear combination of 6 bits of the state
(2 bits of each register) is output. Then, the registers are shifted to the right by
one position, with a nonlinear feedback to the first position of each register. In the
first 66 clocks, each keystream bit is a linear function of the input, whereas the
subsequent keystream bit involves a nonlinear expression. Consequently, given any
output of m = 66 bits, one can efficiently determine some preimages by solving a
linear system. It is possible to find preimages of even larger output size. Observe
that the nonlinear function is quadratic, where the two factors of the product have
subsequent indices. Consequently, one could fix some alternating bits of the state,
which results in additional linear equations for the remaining variables. Let c, l, q
denote constant, linear, and quadratic dependence on the initial state. Let all the
even bits of the initial state be c, see Tab. 3. After update 83, bits 82 and 83 of R2

are both l. Variable t2 takes bits 82 and 83 of R2 to compute the nonlinear term. So

after update 84, t2 = x178 is q (where nonlinear terms in t1 and t3 appear somewhat
later).

Table 3. Evolution of states with partially fixed input

Initial state After 1 update After 84 updates

R1 = lclcl . . . R1 = llclcl . . . R1 = lllll . . .

R2 = clclc . . . R2 = lclclc . . . R2 = lllll . . .

R3 = clclc . . . R3 = lclclc . . . R3 = qllll . . .

After 65 more updates, x243 is quadratic, where x243 is filtered out from R3 in the next
update (after 84 updates, other bits are also q and are filtered out from registers R1

and R2, but on a later point in time). Consequently, keystream bit number 66+84 =
150 (counting from 1) is q, and the first 149 keystream bits are linear in the remaining
variables. The number of remaining variables in the state (the degree of freedom) is
144. Consequently, for an output of size m = 144 bits, we can expect to find one
solution for the remaining variables; this was verified experimentally. The solution
(combined with the fixed bits) yields a preimage of y. Notice that we do not exclude
any preimages this way. In addition, m can be somewhat larger with partial search
for the additional bits.

Example 4. Consider the special output y = 000 . . . 0 of m = 160 bits. By sampling
and partial exhaustive search, we find the nontrivial preimage

x =

100010111100010111001100010101001101000010010010

000100100100110011111011011101100001001100101000

110000000101011001110000111111011001100001101010

011100000101010011001101111010101011111110100001

000001000001101000100001111001101010100010101111

101000001110100101010011000100111001010010101101

⊓⊔

6.2 Potential Attacks

The nonlinear update of Trivium results in equations Sm(x) = y of increasing degree
for increasing values of m. However, for any output y, there are at least 66 linear
equations in the input variables. It is an important and security related question, if
there are additional linear equations for some fixed output y. A linear equation is
determined by D = 289 coefficients, thus we have to compute somewhat more than
289 preimages for this output. By sampling, this can be done in polynomial time.
Here is an experiment:

Example 5. Consider a prescribed output y of 144 bits, and compute 400 preimages
x such that Sm(x) = y (where the preimages are computed by a uniform random
choice of 144 fixed bits of x). Given these preimages, set up and solve the matrix M
of linear monomials in x. For 30 uniform random choices of y, we always observed 66
linearly independent solutions. ⊓⊔

Consequently, Trivium seems to be immune against additional linear equations, that
might help in an attack. Because of the lack of probabilistic solutions, Trivium is also
supposed to be immune against equations of large probability (compare with CanFil1

and CanFil2). As pointed out in [17], there are some states resulting in a weak output:
If R1, R2 and R3 are initialised by some period-3 states, then the whole state (and
hence the output) repeats itself every 3 iterations. Each of these states results in
y = 000 . . . 0. Here is an extended experiment (with partial exhaustive search) for
this special output:

Example 6. Consider the output y = 000 . . . 0 of 150 bits, and compute 400 random
preimages x such that Sm(x) = y. By solving the matrix M of linear monomials in
x, we still observed 66 linearly independent solutions. ⊓⊔

7 Conclusions

Intrinsic properties of augmented functions of stream ciphers have been investigated
with regard to algebraic attacks. Certain properties of the augmented function en-
able efficient algebraic attacks with lower data complexity than established algebraic
attacks. In order to assess resistance of augmented functions against such improved
algebraic attacks, a prespecified number of preimages of outputs of various size of
these functions have to be found. For a random function, the difficulty of finding
preimages increases exponentially with the output size. However, due to a special
structure of the augmented function of a stream cipher, this can be much simpler
than in the random case. For any such stream cipher, our results show the necessity
of checking the augmented function for algebraic relations of low degree for output
sizes for which finding preimages is feasible. In this paper, this has been success-
fully carried out for various filter generators as well as for the eSTREAM candidate
Trivium.

Acknowledgments

This work is supported in part by the National Competence Center in Research
on Mobile Information and Communication Systems (NCCR-MICS), a center of the
Swiss National Science Foundation under grant number 5005-67322. The second au-
thor is supported by Hasler Foundation www.haslerfoundation.ch under project
number 2005. We would like to thank Steve Babbage for encouraging us to study
algebraic immunity of large S-boxes.

References

1. R. J. Anderson. Searching for the Optimum Correlation Attack. In Fast Software Encryption - FSE
1994.

2. F. Armknecht and M. Krause. Constructing Single- and Multi-Output Boolean Functions with Maximal
Algebraic Immunity. In ICALP 2006.

3. F. Armknecht, C. Carlet, P. Gaborit, S. Künzli, W. Meier, and O. Ruatta. Efficient Computation of Al-
gebraic Immunity for Algebraic and Fast Algebraic Attacks. In Advances in Cryptology - EUROCRYPT
2006.

www.haslerfoundation.ch

4. S. Babbage. A Space/Time Tradeoff in Exhaustive Search Attacks on Stream Ciphers. In European
Convention on Security and Detection, IEE Conference Publication No. 408, 1995.

5. A. Biryukov and A. Shamir. Cryptanalytic Time/Memory/Data Tradeoffs for Stream Ciphers. In
Advances in Cryptology - ASIACRYPT 2000.

6. C. de Cannière and B. Preneel. Trivium - A Stream Cipher Construction Inspired by Block Cipher
Design Principles. In eSTREAM, ECRYPT Stream Cipher Project, Report 2005/030.

7. A. Canteaut. Open Problems Related to Algebraic Attacks on Stream Ciphers. In Workshop on Coding
and Cryptography - WCC 2005.

8. N. Courtois. Higher Order Correlation Attacks, XL algorithm and Cryptanalysis of Toyocrypt. In
Cryptology ePrint Archive, Report 2002/087.

9. N. Courtois. Algebraic Attacks on Combiners with Memory and Several Outputs. In Cryptology ePrint
Archive, Report 2003/125.

10. N. Courtois. How Fast can be Algebraic Attacks on Block Ciphers? In Cryptology ePrint Archive,
Report 2006/168.

11. N. Courtois, B. Debraize, and E. Garrido. On Exact Algebraic (Non-)Immunity of S-boxes Based on
Power Functions. In Cryptology ePrint Archive, Report 2005/203.

12. N. Courtois and W. Meier. Algebraic Attacks on Stream Ciphers with Linear Feedback. In Advances
in Cryptology - EUROCRYPT 2003.

13. N. Courtois and J. Pieprzyk. Cryptanalysis of Block Ciphers with Overdefined Systems of Equations.
In Advances in Cryptology - ASIACRYPT 2002.

14. N. Courtois, A. Shamir, J. Patarin, and A. Klimov. Efficient Algorithms for solving Overdefined Systems
of Multivariate Polynomial Equations. In Advances in Cryptology - EUROCRYPT 2000.

15. J.-C. Faugère and G. Ars. An Algebraic Cryptanalysis of Nonlinear Filter Generators using Gröbner
Bases. In Rapport de Recherche de l’INRIA, 2003.

16. J. Dj. Golić. On the Security of Nonlinear Filter Generators. In Fast Software Encryption - FSE 1996.
17. J. Hong. Some Trivial States of Trivium. In eSTREAM Discussion Forum, 2005.
18. M. Krause. BDD-Based Cryptanalysis of Keystream Generators. In Advances in Cryptology - EURO-

CRYPT 2002.
19. B. Löhlein. Attacks based on Conditional Correlations against the Nonlinear Filter Generator. In

Cryptology ePrint Archive, Report 2003/020.
20. Y. Nawaz, K. C. Gupta, and G. Gong. Algebraic Immunity of S-boxes Based on Power Mappings:

Analysis and Construction. In Cryptology ePrint Archive, Report 2006/322.

A Algebraic and Fast Algebraic Attacks

The algebraic immunity AI of a Boolean function f is defined by the minimum degree
d of a function g, such that fg = 0 or (f+1)g = 0. In the case fg = 0, one can multiply
yt = f(Lt(x)) by g and obtains g(Lt(x)) · yt = 0. For yt = 1, this is an equation of
degree d. Similarly, for (f + 1)g = 0, one obtains g(Lt(x)) · (yt + 1) = 0. With RA

linearly independent annihilators of degree d for f and f+1, a single output bit can be
used to set up (in average) RA/2 equations in x at time t. The number of monomials in
these equations is at most D :=

∑d
i=0

(

n
i

)

, hence by linearisation, data complexity of
conventional algebraic attacks becomes about 2D/RA, and time complexity CT = D3.
In fast algebraic attacks, one considers equations of type fg = h for deg h ≥ AI and
deg g < AI. The equation yt = f(Lt(x)) is multiplied by g such that g(Lt(x)) · yt =
h(Lt(x)). One can precompute then a linear combination

∑

i ci ·h(Lt+i(x)) = 0 for all
t, such that

∑

i ci · g(Lt+i(x)) · yt+i = 0 of lower degree deg g. The linear combination
utilises the structure of the LFSR, and helps to cancel out all monomials of degree
larger than deg g. However, the equation depends on several output bits yt. It is
a special case of implicit equation, where the degree in y is 1. Depending on the
degrees of g and h, time complexity can be smaller than in algebraic attacks, and
data complexity is about CD = D + E, where E :=

∑e
i=0

(

n
i

)

. This is not much
larger than in algebraic attacks (with the same asymptotic complexity). See [3] for
an efficient computation of annihilators and low-degree multiples.

B Experimental Setup for Filter Generators

In Tab. 4, we collect the setups of our experiments with filter generators, where n is
the size of the LFSR, and k the number of inputs to the filter function. The feedback
taps are chosen such that the LFSR has maximum period (i.e., the corresponding
polynomial is primitive), and filter taps are chosen according to a full positive dif-
ference set (i.e., all the positive pairwise differences are distinct). Tap positions are
counted from the left (starting by 1), and the LFSR is shifted to the right.

Table 4. Different setups for our experiments with filter generators.

Setup n k feedback taps filter taps

1 18 5 [2, 3, 5, 15, 17, 18] [1, 2, 7, 11, 18]
2 18 5 [1, 2, 5, 7, 9, 14, 15, 16, 17, 18] [1, 3, 7, 17, 18]
3 18 5 [3, 5, 7, 15, 17, 18] [1, 5, 8, 16, 18]
4 18 5 [4, 5, 6, 10, 13, 15, 16, 18] [1, 6, 7, 15, 18]
5 18 5 [2, 3, 5, 7, 11, 15, 17, 18] [1, 3, 6, 10, 18]

6 20 5 [7, 10, 13, 17, 18, 20] [1, 3, 9, 16, 20]
7 20 5 [1, 2, 4, 7, 8, 10, 11, 12, 13, 15, 19, 20] [1, 5, 15, 18, 20]
8 20 5 [2, 3, 4, 5, 6, 7, 8, 11, 13, 14, 19, 20] [1, 4, 9, 16, 20]
9 20 5 [1, 2, 3, 4, 5, 8, 10, 11, 12, 13, 15, 17, 19, 20] [1, 2, 15, 17, 20]
10 20 5 [1, 2, 6, 7, 9, 11, 15, 20] [1, 5, 13, 18, 20]

11 40 5 [3, 8, 9, 10, 11, 13, 14, 15, 18, 19, [1, 3, 10, 27, 40]
23, 24, 25, 26, 27, 30, 33, 34, 36, 40]

C Additional Experimental Results

In Tab. 5, we present the number of conditional equations for different filters and
different parameters, where the size of the LFSR is n = 18.

Table 5. Counting the number of linear equations R for the augmented function of
different filter generators, with n = 18 bit input and m bit output.

Filter m R for setups 1-5

CanFil1 12 0 0 0 0 0
13 625 288 908 335 493

CanFil2 12 0 0 0 0 0
13 144 346 514 207 418

CanFil3 12 0 0 4 0 0
13 1272 1759 2173 2097 983

CanFil4 7 0 0 0 0 0
8 19 4 0 0 0
9 102 17 1 0 12

10 533 69 9 20 167

CanFil5 6 1 0 0 0 0
7 4 0 0 0 0
8 15 0 0 0 1
9 55 1 0 0 39

10 411 61 3 0 360
11 2142 1017 166 10 1958

CanFil6 8 0 0 0 0 0
9 0 10 64 0 0

10 0 97 256 0 0
11 0 517 1024 0 0
12 0 2841 3533 1068 0
13 152 19531 17626 12627 9828

CanFil7 11 0 2 0 0 6
12 68 191 36 26 178

Majority5 8 1 0 0 0 0
9 8 3 42 27 14

10 97 94 401 282 158

