New Features of Latin Dances: Analysis of Salsa, ChaCha, and Rumba

Jean-Philippe Aumasson¹ Simon Fischer¹ Shahram Khazaei² Willi Meier¹ Christian Rechberger³

¹FHNW, Windisch, Switzerland ²EPFL, Lausanne, Switzerland ³IAIK, Graz, Austria

Fast Software Encryption Lausanne, Switzerland, Feb. 2008

Outline

- Targets of our attcks:
 - Two stream ciphers: Salsa and ChaCha
 - A compression function: Rumba
- Our Contribution:
 - Introducing the concept of Probabilistic Neutral Bits (PNB)
 - Attack on reduced rounds of Salsa, ChaCha and Rumba
 - The first break of Salsa20/8

Part I Analysis of Salsa and ChaCha

Description of Salsa

$$X = \begin{pmatrix} x_0 & x_1 & x_2 & x_3 \\ x_4 & x_5 & x_6 & x_7 \\ x_8 & x_9 & x_{10} & x_{11} \\ x_{12} & x_{13} & x_{14} & x_{15} \end{pmatrix} = \begin{pmatrix} c_0 & k_0 & k_1 & k_2 \\ k_3 & c_1 & v_0 & v_1 \\ t_0 & t_1 & c_2 & k_4 \\ k_5 & k_6 & k_7 & c_3 \end{pmatrix}$$

A keystream block Z is defined as $Z = X + \text{Round}^{20}(X)$ with Round being the round function of Salsa20 defined as:

- Rotates the jth column of its input X of j positions up,
- ► Transforms each column (x₀, x₁, x₂, x₃)[†] to (z₀, z₁, z₂, z₃)[†] by

$$\begin{array}{rcl} z_1 &= x_1 & \oplus \left[(x_3 + x_0) \lll 7 \right] \\ z_2 &= x_2 & \oplus \left[(x_0 + z_1) \lll 9 \right] \\ z_3 &= x_3 & \oplus \left[(z_1 + z_2) \lll 13 \right] \\ z_0 &= x_0 & \oplus \left[(z_2 + z_3) \lll 18 \right] \end{array}$$

- Rotates back the *jth* column of *j* positions down,
- Transpose matrix

Description of ChaCha

The same as Salsa except for the non-linear transformation:

Bernstein mentions: It brings better confusion with the same number of operations compared with Salsa.

This is the early version; new version to be proposed at SASC'08 has different rotation values.

Attack Overview

Analysis of Salsa and ChaCha reduced to *R* rounds:

- Identify an optimal choice for truncated differentials (over the first r rounds)
- ► Guess partially the key and detect the bias backwardly from last round to *r*-th round (*R* − *r* rounds).

Differential Attack: More Details

Two steps:

Finding an *r*-round truncated bias differential with *ID*Δ⁰:
Pr_{v,t}([Round^r(X) ⊕ Round^r(X')]_{p,q} = 1 | Δ⁰) = ¹/₂(1 + ε_d)}

Backward computation:

 $f(k, v, t, Z, Z') := [\operatorname{Round}^{r-R}(Z - X) \oplus \operatorname{Round}^{r-R}(Z' - X')]_{\rho,q}$

Hypotheses Testing

$$H_0: \hat{k} = k$$
$$H_1: \hat{k} \neq k$$

$$\Pr\{f(\hat{k}, v, t, Z, Z') = 1 \mid H_0\} = \frac{1}{2}(1 + \varepsilon_d) \\ \Pr\{f(\hat{k}, v, t, Z, Z') = 1 \mid H_1\} = \frac{1}{2}$$

Classical way: try all 2^{256} guesses for \hat{k}

New Idea:

Find an approximation g(k, v, t, Z, Z') of *f* which effectively depends only on m (< 256) key bits.

New Idea:

Find an approximation g(k, v, t, Z, Z') of *f* which effectively depends only on m (< 256) key bits.

Motivation: Reducing the search space from 2^{256} to 2^m

How to find *g*?

Probabilistic Neutral Bits

Our approach: 1) Divide the key bits into two sets: significant key bits and non-significant ones. 2) replace non-significant key bits with some fixed values.

Probabilistic Neutral Bits

Our approach: 1) Divide the key bits into two sets: significant key bits and non-significant ones. 2) replace non-significant key bits with some fixed values.

Definition: For a function *f*, the neutrality measure of the key bit k_i is defined as $\gamma_i = 2p_i - 1$, where p_i is the probability that complementing the key bit k_i does not change the output of *f*.

Probabilistic Neutral Bits

Our approach: 1) Divide the key bits into two sets: significant key bits and non-significant ones. 2) replace non-significant key bits with some fixed values.

Definition: For a function *f*, the neutrality measure of the key bit k_i is defined as $\gamma_i = 2p_i - 1$, where p_i is the probability that complementing the key bit k_i does not change the output of *f*.

Non-significant key bits: all key bits with $|\gamma_i| > \gamma$ for some γ .

Detection of the Bias

Function Approximation:

 $\Pr_{\mathbf{v},t}{f(\mathbf{k},\mathbf{v},t,\mathbf{Z},\mathbf{Z}')} = g(\mathbf{k},\mathbf{v},t,\mathbf{Z},\mathbf{Z}')} = \frac{1}{2}(1+\varepsilon_a)$

Differential Bias:

 $\Pr_{v,t}{f(k, v, t, Z, Z') = 1} = \frac{1}{2}(1 + \varepsilon_d)$

Detection of the Bias

Function Approximation:

 $\Pr_{\mathbf{v},t}{f(\mathbf{k},\mathbf{v},t,\mathbf{Z},\mathbf{Z}')} = g(\mathbf{k},\mathbf{v},t,\mathbf{Z},\mathbf{Z}')} = \frac{1}{2}(1+\varepsilon_a)$

Differential Bias:

$$\Pr_{v,t}\{f(k, v, t, Z, Z') = 1\} = \frac{1}{2}(1 + \varepsilon_d)$$

 $\Rightarrow \Pr_{\mathbf{v},t}\{g(\mathbf{k},\mathbf{v},t,Z,Z')=1\} = \frac{1}{2}(1+\varepsilon), \, \varepsilon = \varepsilon_{\mathbf{a}} \cdot \varepsilon_{\mathbf{d}}$

Detection of the Bias

Function Approximation:

 $\Pr_{\mathbf{v},t}{f(\mathbf{k},\mathbf{v},t,\mathbf{Z},\mathbf{Z}')} = g(\mathbf{k},\mathbf{v},t,\mathbf{Z},\mathbf{Z}')} = \frac{1}{2}(1+\varepsilon_a)$

Differential Bias:

$$\Pr_{v,t}{f(k, v, t, Z, Z') = 1} = \frac{1}{2}(1 + \varepsilon_d)$$

$$\Rightarrow \Pr_{\mathbf{v},t}\{g(\mathbf{k},\mathbf{v},t,\mathbf{Z},\mathbf{Z}')=1\} = \frac{1}{2}(1+\varepsilon), \, \varepsilon = \varepsilon_{\mathbf{a}} \cdot \varepsilon_{\mathbf{d}}$$

To detect the bias with $p_{nd} = 1.3 \times 10^{-3}$ and p_{fa} :

Samples:
$$N \approx \left(\frac{\sqrt{-2\log p_{\text{fa}}} + 3\sqrt{1-\varepsilon^2}}{\varepsilon}\right)^2$$

Time: $N2^m$

Attack

- Precomputation
- ► Effective (or on-line) attack

Precomputation

- 1. Find a high-probability *r*-round truncated differential (i.e. Δ^0 and bit position index (p, q)).
- 2. Choose a threshold γ .
- 3. Construct the function *f*.
- 4. Estimate the neutrality measure γ_i of each key bit.
- 5. Put all those key bits with $|\gamma_i| < \gamma$ in the significant key bits set of size *m*.
- 6. Construct the approximation function g.
- 7. Estimate the bias ε .
- 8. Estimate the required number of samples *N*.

Effective attack

- 1. For an unknown key, collect *N* pairs of keystream blocks commited to the input difference Δ^0 .
- 2. For each choice of the subkey (i.e. the *m* significant key bits) do:
 - 2.1 Compute the bias of g using the N keystream block pairs.
 - 2.2 If the optimal distinguisher legitimates the subkeys candidate as a (possibly) correct one, perform an additional exhaustive search over the 256 m non-significant key bits to check the correctness of this filtered subkey and to find the non-significant key bits.
 - 2.3 If the right key is found stop and output the recovered key.

Time complexity: $2^{m}(N + 2^{256-m}p_{fa}) = 2^{m}N + 2^{256}p_{fa}$

Simulation Results

	Salsa20/7	Salsa20/8	ChaCha6	ChaCha7
γ	0.6	0.2	0.55	0.4
т	131	228	117	208
ε	0.006	0.004	0.004	0.002
Ν	2 ²³	2 ²¹	2 ²⁴	2 ²³
Before	2 ¹⁹⁰	2 ²⁵⁵	2 ²⁵⁵	2 ²⁵⁵
Now	2 ¹⁵³	2 ²⁴⁹	2 ¹⁴⁰	2 ²³¹

Simulation Results

	Salsa20/7	Salsa20/8	ChaCha6	ChaCha7
γ	0.6	0.2	0.55	0.4
т	131	228	117	208
ε	0.006	0.004	0.004	0.002
N	2 ²³	2 ²¹	2 ²⁴	2 ²³
Before	2 ¹⁹⁰	2 ²⁵⁵	2 ²⁵⁵	2 ²⁵⁵
Now	2 ¹⁵³	2 ²⁴⁹	2 ¹⁴⁰	2 ²³¹

Part II Analysis of Rumba Compression Function

Description of Rumba

- Maps 1536-bit (48-word) message to a 512-bit (16-word) value
- $M = (M_0, M_1, M_2, M_3)$
- ► Consists of four instances of Salsa with different diagonal constants: F_i(M_i) = (X_i + Round²⁰(X_i))

Rumba $(M) = F_0(M_0) \oplus F_1(M_1) \oplus F_2(M_2) \oplus F_3(M_3)$

Collision Attack on Rumba20

Differential based attack involving two message blocks M and M' satisfying:

 $M_0 \oplus M'_0 = M_2 \oplus M'_2$, $M_1 = M'_1$ and $M_3 = M'_3$.

Collision Attack on Rumba20

Differential based attack involving two message blocks M and M' satisfying:

$$M_0 \oplus M'_0 = M_2 \oplus M'_2$$
, $M_1 = M'_1$ and $M_3 = M'_3$.

$$F_0(M_0) \oplus F_0(M'_0) = F_2(M_2) \oplus F_2(M'_2)$$

This suggests us to look for high probability differentials for F_i

Notations

 $\Delta_i^0 = X_i \oplus X'_i$: Initial input difference for F_i $\Delta_i^r = \text{Round}^r(X_i) \oplus \text{Round}^r(X'_i)$: Difference after *r* round without FF

Attack procedure

- Find a High-Probability Differential $(\Delta_i^r \mid \Delta_i^0)$
 - Use a linearized version of Rumba by replacing '+' with ' \oplus '
 - Find low weight input differentials

Attack procedure

- Find a High-Probability Differential $(\Delta_i^r \mid \Delta_i^0)$
 - Use a linearized version of Rumba by replacing '+' with ' \oplus '
 - Find low weight input differentials
- Enlarge the probabilities
 - Linearization method in the first round
 - Neutral bits technique in the second round

Our Low Weight Differential

$$\Delta_i^0 = \begin{pmatrix} 0 & 0 & 00000002 & 0\\ 00080040 & 0 & 00000020 & 0\\ 80000000 & 0 & 0 & 0\\ 80001000 & 0 & 01001000 & 0 \end{pmatrix}$$

Our Low Weight Differential

Our Low Weight Differential

$$\Delta_{i}^{0} = \begin{pmatrix} 0 & 0 & 00000002 & 0\\ 00080040 & 0 & 0000020 & 0\\ 80000000 & 0 & 0 & 0\\ 80001000 & 0 & 01001000 & 0 \end{pmatrix}$$

$$\begin{pmatrix} 0 & 0 & 1 & 0 \\ 2 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 2 & 0 & 2 & 0 \end{pmatrix} \xrightarrow{\text{Round}} \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 \end{pmatrix} \xrightarrow{\text{Round}} \begin{pmatrix} 2 & 2 & 3 & 1 \\ 0 & 3 & 4 & 2 \\ 1 & 1 & 7 & 3 \\ 1 & 1 & 1 & 6 \end{pmatrix} \xrightarrow{\text{Round}} \begin{pmatrix} 8 & 3 & 2 & 4 \\ 5 & 10 & 3 & 4 \\ 9 & 11 & 13 & 7 \\ 6 & 9 & 10 & 9 \end{pmatrix}$$

Attack Complexity

Without using linearization and neutral bits technique:

	Rumba20/3	Rumba20/4
Without FF	2 ⁴¹	2 ¹⁹⁴
With FF	2 ⁸⁵	2 ³¹³

Improving with Linearization and Neutral Bits

$$\begin{pmatrix} 0 & 0 & 1 & 0 \\ 2 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 2 & 0 & 2 & 0 \end{pmatrix} \xrightarrow{\text{Round}} \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 \end{pmatrix} \xrightarrow{\text{Round}} \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 2^{-7} & & \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 1 & 2 & 0 \\ 0 & 0 & 1 & 1 \end{pmatrix}$$

Improving with Linearization and Neutral Bits

$$\begin{pmatrix} 0 & 0 & 1 & 0 \\ 2 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 2 & 0 & 2 & 0 \end{pmatrix} \xrightarrow[\mathsf{Round}]{\mathsf{Round}} \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 \end{pmatrix} \xrightarrow[\mathsf{Round}]{\mathsf{Round}} \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 1 & 2 & 0 \\ 0 & 0 & 1 & 1 \end{pmatrix}$$

Try until a good message pair with lots of 2-neutrals bits has been found ...

Our Message pairs

• For F_0 :

 $\boldsymbol{X}_{0} = \begin{pmatrix} 73726966 & 00000400 & 0000080 & 0020001 \\ 00002000 & 6d755274 & 000001 \text{fe} & 0200008 \\ 0000040 & 0000042 & 30326162 & 10002800 \\ 0000080 & 0000000 & 01200000 & 636f6c62 \end{pmatrix}$

with 251 neutral bits and a 2-neutral set of size 147. Conforming probability is Pr = 0.52.

▶ For *F*₂:

 $\boldsymbol{X}_{2} = \begin{pmatrix} 72696874 & 0000000 & 00040040 & 00000400 \\ 00008004 & 6d755264 & 000001 \text{fe} & 06021184 \\ 00000000 & 00800040 & 30326162 & 0000000 \\ 00000300 & 00000400 & 04000000 & 636f6c62 \end{pmatrix}$

with 252 neutral bits and a 2-neutral set of size 146, and conforming probability Pr = 0.41.

Improving with Linearization and Neutral Bits

$$\Delta_i^2 = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 1 & 2 & 0 \\ 0 & 0 & 1 & 1 \end{pmatrix} \xrightarrow{\text{Round}} \Delta_i^3 = \begin{pmatrix} 2 & 2 & 3 & 1 \\ 0 & 3 & 4 & 2 \\ 1 & 1 & 7 & 3 \\ 1 & 1 & 1 & 6 \end{pmatrix}$$

Improving with Linearization and Neutral Bits

$$\Delta_i^2 = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 1 & 2 & 0 \\ 0 & 0 & 1 & 1 \end{pmatrix} \xrightarrow{\text{Round}} \Delta_i^3 = \begin{pmatrix} 2 & 2 & 3 & 1 \\ 0 & 3 & 4 & 2 \\ 1 & 1 & 7 & 3 \\ 1 & 1 & 1 & 6 \end{pmatrix}$$

Attack Complexity using linearization and neutral bits technique:

	Rumba20/3
Without FF	2 ³⁵
With FF	2 ⁷⁹

Summary

Summary

- Introducing the concept of Probabilistic Neutral Bits
- Breaking Salsa20/8 and ChaCha7
- Collision attack on Rumba20/3 in time 2⁷⁹
- Samples of near collision attack on Rumba20/3 and Rumba20/4

Thank You for your Attention!

Shoot me your Questions :)