
New Features of Latin Dances:
Analysis of Salsa, ChaCha, and Rumba

Jean-Philippe Aumasson1 Simon Fischer1

Shahram Khazaei2

Willi Meier1 Christian Rechberger3

1FHNW, Windisch, Switzerland
2EPFL, Lausanne, Switzerland

3IAIK, Graz, Austria

Fast Software Encryption
Lausanne, Switzerland, Feb. 2008

1 / 28

Outline

I Targets of our attcks:
I Two stream ciphers: Salsa and ChaCha
I A compression function: Rumba

I Our Contribution:
I Introducing the concept of Probabilistic Neutral Bits (PNB)
I Attack on reduced rounds of Salsa, ChaCha and Rumba
I The first break of Salsa20/8

2 / 28

Part I
Analysis of Salsa and ChaCha

3 / 28

Description of Salsa

X =


x0 x1 x2 x3
x4 x5 x6 x7
x8 x9 x10 x11
x12 x13 x14 x15

 =


c0 k0 k1 k2
k3 c1 v0 v1
t0 t1 c2 k4
k5 k6 k7 c3


A keystream block Z is defined as Z = X + Round20(X) with
Round being the round function of Salsa20 defined as:

I Rotates the j th column of its input X of j positions up,
I Transforms each column (x0, x1, x2, x3)

† to (z0, z1, z2, z3)
†

by
z1 = x1 ⊕

[
(x3 + x0) ≪ 7

]
z2 = x2 ⊕

[
(x0 + z1) ≪ 9

]
z3 = x3 ⊕

[
(z1 + z2) ≪ 13

]
z0 = x0 ⊕

[
(z2 + z3) ≪ 18

]
,

I Rotates back the j th column of j positions down,
I Transpose matrix

4 / 28

Description of ChaCha

The same as Salsa except for the non-linear transformation:

b0 = x0 + x3 z0 = b0 + b3
b1 = (x1 ⊕ b0) ≪ 7 z1 = (b1 ⊕ z0) ≪ 13
b2 = x2 + b1 z2 = b2 + z1
b3 = (x3 ⊕ b2) ≪ 9 z3 = (b3 ⊕ z2) ≪ 18

Bernstein mentions: It brings better confusion with the same
number of operations compared with Salsa.

This is the early version; new version to be proposed at
SASC’08 has different rotation values.

5 / 28

Attack Overview

Analysis of Salsa and ChaCha reduced to R rounds:

I Identify an optimal choice for truncated differentials (over
the first r rounds)

I Guess partially the key and detect the bias backwardly
from last round to r -th round (R − r rounds).

6 / 28

Differential Attack: More Details

Two steps:

I Finding an r -round truncated bias differential with ID∆0:

Prv ,t([Roundr (X)⊕ Roundr (X ′)]p,q = 1 | ∆0) = 1
2(1 + εd)}

I Backward computation:

f (k , v , t , Z , Z ′) := [Roundr−R(Z−X)⊕Roundr−R(Z ′−X ′)]p,q

7 / 28

Hypotheses Testing

H0 : k̂ = k
H1 : k̂ 6= k

Pr{f (k̂ , v , t , Z , Z ′) = 1 | H0} = 1
2(1 + εd)

Pr{f (k̂ , v , t , Z , Z ′) = 1 | H1} = 1
2

Classical way: try all 2256 guesses for k̂

8 / 28

New Idea:

Find an approximation g(k , v , t , Z , Z ′) of f which effectively
depends only on m (< 256) key bits.

Motivation: Reducing the search space from 2256 to 2m

How to find g?

9 / 28

New Idea:

Find an approximation g(k , v , t , Z , Z ′) of f which effectively
depends only on m (< 256) key bits.

Motivation: Reducing the search space from 2256 to 2m

How to find g?

9 / 28

Probabilistic Neutral Bits

Our approach: 1) Divide the key bits into two sets: significant
key bits and non-significant ones. 2) replace non-significant key
bits with some fixed values.

Definition: For a function f , the neutrality measure of the key bit
ki is defined as γi = 2pi − 1 , where pi is the probability that
complementing the key bit ki does not change the output of f .

Non-significant key bits: all key bits with |γi | > γ for some γ.

10 / 28

Probabilistic Neutral Bits

Our approach: 1) Divide the key bits into two sets: significant
key bits and non-significant ones. 2) replace non-significant key
bits with some fixed values.

Definition: For a function f , the neutrality measure of the key bit
ki is defined as γi = 2pi − 1 , where pi is the probability that
complementing the key bit ki does not change the output of f .

Non-significant key bits: all key bits with |γi | > γ for some γ.

10 / 28

Probabilistic Neutral Bits

Our approach: 1) Divide the key bits into two sets: significant
key bits and non-significant ones. 2) replace non-significant key
bits with some fixed values.

Definition: For a function f , the neutrality measure of the key bit
ki is defined as γi = 2pi − 1 , where pi is the probability that
complementing the key bit ki does not change the output of f .

Non-significant key bits: all key bits with |γi | > γ for some γ.

10 / 28

Detection of the Bias
Function Approximation:

Prv ,t{f (k , v , t , Z , Z ′) = g(k , v , t , Z , Z ′)} = 1
2(1 + εa)

Differential Bias:

Prv ,t{f (k , v , t , Z , Z ′) = 1} = 1
2(1 + εd)

⇒ Prv ,t{g(k , v , t , Z , Z ′) = 1} = 1
2(1 + ε), ε = εa · εd

To detect the bias with pnd = 1.3× 10−3 and pfa:

Samples: N ≈
(√

−2 log pfa+3
√

1−ε2

ε

)2

Time: N2m

11 / 28

Detection of the Bias
Function Approximation:

Prv ,t{f (k , v , t , Z , Z ′) = g(k , v , t , Z , Z ′)} = 1
2(1 + εa)

Differential Bias:

Prv ,t{f (k , v , t , Z , Z ′) = 1} = 1
2(1 + εd)

⇒ Prv ,t{g(k , v , t , Z , Z ′) = 1} = 1
2(1 + ε), ε = εa · εd

To detect the bias with pnd = 1.3× 10−3 and pfa:

Samples: N ≈
(√

−2 log pfa+3
√

1−ε2

ε

)2

Time: N2m

11 / 28

Detection of the Bias
Function Approximation:

Prv ,t{f (k , v , t , Z , Z ′) = g(k , v , t , Z , Z ′)} = 1
2(1 + εa)

Differential Bias:

Prv ,t{f (k , v , t , Z , Z ′) = 1} = 1
2(1 + εd)

⇒ Prv ,t{g(k , v , t , Z , Z ′) = 1} = 1
2(1 + ε), ε = εa · εd

To detect the bias with pnd = 1.3× 10−3 and pfa:

Samples: N ≈
(√

−2 log pfa+3
√

1−ε2

ε

)2

Time: N2m

11 / 28

Attack

I Precomputation

I Effective (or on-line) attack

12 / 28

Precomputation
1. Find a high-probability r -round truncated differential (i.e.∆0

and bit position index (p, q)).
2. Choose a threshold γ.
3. Construct the function f .
4. Estimate the neutrality measure γi of each key bit.
5. Put all those key bits with |γi | < γ in the significant key bits

set of size m.
6. Construct the approximation function g.
7. Estimate the bias ε.
8. Estimate the required number of samples N.

13 / 28

Effective attack
1. For an unknown key, collect N pairs of keystream blocks

commited to the input difference ∆0.
2. For each choice of the subkey (i.e. the m significant key

bits) do:
2.1 Compute the bias of g using the N keystream block pairs.
2.2 If the optimal distinguisher legitimates the subkeys

candidate as a (possibly) correct one, perform an additional
exhaustive search over the 256−m non-significant key bits
to check the correctness of this filtered subkey and to find
the non-significant key bits.

2.3 If the right key is found stop and output the recovered key.

Time complexity: 2m(N + 2256−mpfa) = 2mN + 2256pfa

14 / 28

Simulation Results

Salsa20/7 Salsa20/8 ChaCha6 ChaCha7
γ 0.6 0.2 0.55 0.4

m 131 228 117 208
ε 0.006 0.004 0.004 0.002

N 223 221 224 223

Before 2190 2255 2255 2255

Now 2153 2249 2140 2231

15 / 28

Simulation Results

Salsa20/7 Salsa20/8 ChaCha6 ChaCha7
γ 0.6 0.2 0.55 0.4

m 131 228 117 208
ε 0.006 0.004 0.004 0.002

N 223 221 224 223

Before 2190 2255 2255 2255

Now 2153 2249 2140 2231

15 / 28

Part II
Analysis of Rumba Compression Function

16 / 28

Description of Rumba

I Maps 1536-bit (48-word) message to a 512-bit (16-word)
value

I M = (M0, M1, M2, M3)

I Consists of four instances of Salsa with different diagonal
constants: Fi(Mi) = (Xi + Round20(Xi))

Rumba(M) = F0(M0)⊕ F1(M1)⊕ F2(M2)⊕ F3(M3)

17 / 28

Collision Attack on Rumba20

Differential based attack involving two message blocks M and
M ′ satisfying:

M0 ⊕M ′
0 = M2 ⊕M ′

2, M1 = M ′
1 and M3 = M ′

3.

F0(M0)⊕ F0(M ′
0) = F2(M2)⊕ F2(M ′

2)

This suggests us to look for high probability differentials for Fi

18 / 28

Collision Attack on Rumba20

Differential based attack involving two message blocks M and
M ′ satisfying:

M0 ⊕M ′
0 = M2 ⊕M ′

2, M1 = M ′
1 and M3 = M ′

3.

F0(M0)⊕ F0(M ′
0) = F2(M2)⊕ F2(M ′

2)

This suggests us to look for high probability differentials for Fi

18 / 28

Notations

∆0
i = Xi ⊕ X ′

i : Initial input difference for Fi

∆r
i = Roundr (Xi)⊕ Roundr (X ′

i): Difference after r round
without FF

19 / 28

Attack procedure

I Find a High-Probability Differential (∆r
i | ∆0

i)
I Use a linearized version of Rumba by replacing ’+’ with ’⊕’
I Find low weight input differentials

I Enlarge the probabilities
I Linearization method in the first round
I Neutral bits technique in the second round

20 / 28

Attack procedure

I Find a High-Probability Differential (∆r
i | ∆0

i)
I Use a linearized version of Rumba by replacing ’+’ with ’⊕’
I Find low weight input differentials

I Enlarge the probabilities
I Linearization method in the first round
I Neutral bits technique in the second round

20 / 28

Our Low Weight Differential

∆0
i =


0 0 00000002 0

00080040 0 00000020 0
80000000 0 0 0
80001000 0 01001000 0




0 0 1 0
2 0 1 0
1 0 0 0
2 0 2 0

 Round−→

2−4


0 0 0 0
0 0 0 0
1 0 0 0
1 0 1 0

 Round−→

2−7


0 0 0 0
0 0 0 0
1 1 2 0
0 0 1 1

 Round−→

2−41


2 2 3 1
0 3 4 2
1 1 7 3
1 1 1 6

 Round−→

2−194


8 3 2 4
5 10 3 4
9 11 13 7
6 9 10 9



21 / 28

Our Low Weight Differential

∆0
i =


0 0 00000002 0

00080040 0 00000020 0
80000000 0 0 0
80001000 0 01001000 0




0 0 1 0
2 0 1 0
1 0 0 0
2 0 2 0

 Round−→

2−4


0 0 0 0
0 0 0 0
1 0 0 0
1 0 1 0

 Round−→

2−7


0 0 0 0
0 0 0 0
1 1 2 0
0 0 1 1

 Round−→

2−41


2 2 3 1
0 3 4 2
1 1 7 3
1 1 1 6

 Round−→

2−194


8 3 2 4
5 10 3 4
9 11 13 7
6 9 10 9



21 / 28

Our Low Weight Differential

∆0
i =


0 0 00000002 0

00080040 0 00000020 0
80000000 0 0 0
80001000 0 01001000 0




0 0 1 0
2 0 1 0
1 0 0 0
2 0 2 0

 Round−→
2−4


0 0 0 0
0 0 0 0
1 0 0 0
1 0 1 0

 Round−→
2−7


0 0 0 0
0 0 0 0
1 1 2 0
0 0 1 1

 Round−→
2−41


2 2 3 1
0 3 4 2
1 1 7 3
1 1 1 6

 Round−→
2−194


8 3 2 4
5 10 3 4
9 11 13 7
6 9 10 9



21 / 28

Attack Complexity

Without using linearization and neutral bits technique:

Rumba20/3 Rumba20/4
Without FF 241 2194

With FF 285 2313

22 / 28

Improving with Linearization and Neutral Bits


0 0 1 0
2 0 1 0
1 0 0 0
2 0 2 0

 Round−→
2−4


0 0 0 0
0 0 0 0
1 0 0 0
1 0 1 0

 Round−→
2−7


0 0 0 0
0 0 0 0
1 1 2 0
0 0 1 1



Try until a good message pair with lots of 2-neutrals bits has
been found ...

23 / 28

Improving with Linearization and Neutral Bits


0 0 1 0
2 0 1 0
1 0 0 0
2 0 2 0

 Round−→
1


0 0 0 0
0 0 0 0
1 0 0 0
1 0 1 0

 Round−→
2−3


0 0 0 0
0 0 0 0
1 1 2 0
0 0 1 1



Try until a good message pair with lots of 2-neutrals bits has
been found ...

23 / 28

Our Message pairs
I For F0:

X0 =


73726966 00000400 00000080 00200001
00002000 6d755274 000001fe 02000008
00000040 00000042 30326162 10002800
00000080 00000000 01200000 636f6c62


with 251 neutral bits and a 2-neutral set of size 147.
Conforming probability is Pr = 0.52.

I For F2:

X2 =


72696874 00000000 00040040 00000400
00008004 6d755264 000001fe 06021184
00000000 00800040 30326162 00000000
00000300 00000400 04000000 636f6c62


with 252 neutral bits and a 2-neutral set of size 146, and
conforming probability Pr = 0.41.

24 / 28

Improving with Linearization and Neutral Bits

∆2
i =


0 0 0 0
0 0 0 0
1 1 2 0
0 0 1 1

 Round−→
2−34

∆3
i =


2 2 3 1
0 3 4 2
1 1 7 3
1 1 1 6



Attack Complexity using linearization and neutral bits
technique:

Rumba20/3
Without FF 235

With FF 279

25 / 28

Improving with Linearization and Neutral Bits

∆2
i =


0 0 0 0
0 0 0 0
1 1 2 0
0 0 1 1

 Round−→
2−34

∆3
i =


2 2 3 1
0 3 4 2
1 1 7 3
1 1 1 6



Attack Complexity using linearization and neutral bits
technique:

Rumba20/3
Without FF 235

With FF 279

25 / 28

Summary

26 / 28

Summary

I Introducing the concept of Probabilistic Neutral Bits
I Breaking Salsa20/8 and ChaCha7
I Collision attack on Rumba20/3 in time 279

I Samples of near collision attack on Rumba20/3 and
Rumba20/4

27 / 28

Thank You for your Attention!

Shoot me your Questions :)

28 / 28

